Skip to main content

Generalizing Graph Network Models for the Traveling Salesman Problem with Lin-Kernighan-Helsgaun Heuristics

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14447))

Included in the following conference series:

  • 707 Accesses

Abstract

Existing graph convolutional network (GCN) models for the traveling salesman problem (TSP) cannot generalize well to TSP instances with larger number of cities than training samples, and the NP-Hard nature of the TSP renders it impractical to use large-scale instances for training. This paper proposes a novel approach that generalizes well a pre-trained GCN model for a fixed small TSP size to large scale instances with the help of Lin-Kernighan-Helsgaun (LKH) heuristics. This is realized by first devising a Sierpinski partition scheme to partition a large TSP into sub-problems that can be efficiently solved by the pre-trained GCN, and then developing an attention-based merging mechanism to integrate the sub-solutions as a whole solution to the original TSP instance. Specifically, we train a GCN model by supervised learning to produce edge prediction heat maps of small-scale TSP instances, then apply it to the sub-problems of a large TSP instance generated by partition strategies. Controlled by an attention mechanism, all the heat maps of the sub-problems are merged into a complete one to construct the edge candidate set for LKH. Experiments show that this new approach significantly enhances the generalization ability of the pre-trained GCN model without using labeled large-scale TSP instances in the training process and also outperforms LKH in the same time limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/CMACH508/Generalizing-Graph-Network-Models-for-the-TSP.

  2. 2.

    http://akira.ruc.dk/~keld/research/LKH/.

References

  1. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006). www.math.uwaterloo.ca/tsp/concorde

  2. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. In: Workshop Track of the International Conference on Learning Representations (2017)

    Google Scholar 

  3. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Emami, P., Ranka, S.: Learning permutations with sinkhorn policy gradient. arXiv preprint arXiv:1805.07010 (2018)

  5. Fu, Z.H., Qiu, K.B., Zha, H.: Generalize a small pre-trained model to arbitrarily large tsp instances. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 7474–7482 (2021)

    Google Scholar 

  6. Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Helsgaun, K.: General k-opt submoves for the lin-kernighan tsp heuristic. Math. Program. Comput. 1(2), 119–163 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Helsgaun, K.: An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman and vehicle routing problems. Roskilde: Roskilde University, pp. 24–50 (2017)

    Google Scholar 

  9. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study in local optimization. Local Search Comb. Optim. 1(1), 215–310 (1997)

    MATH  Google Scholar 

  10. Joshi, C.K., Laurent, T., Bresson, X.: An efficient graph convolutional network technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227 (2019)

  11. Karp, R.M.: Probabilistic analysis of partitioning algorithms for the traveling-salesman problem in the plane. Math. Oper. Res. 2(3), 209–224 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  14. Kool, W., Hoof, H.V., Welling, M.: Attention, learn to solve routing problems! In: International Conference on Learning Representations (2019)

    Google Scholar 

  15. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma, H., Tu, S., Xu, L.: IA-CL: A deep bidirectional competitive learning method for traveling salesman problem. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol. 13623, pp. 525–536. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-30105-6_44

  17. Nowak, A., Villar, S., Bandeira, A.S., Bruna, J.: Revised note on learning quadratic assignment with graph neural networks. In: 2018 IEEE Data Science Workshop, DSW 2018, Lausanne, Switzerland, June 4–6, 2018, pp. 229–233. IEEE (2018)

    Google Scholar 

  18. Platzman, L.K., Bartholdi, J.J., III.: Spacefilling curves and the planar travelling salesman problem. J. ACM (JACM) 36(4), 719–737 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rohe, A.: Parallele heuristiken für sehr große travelling salesman probleme. diplom. de (1998)

    Google Scholar 

  20. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  21. Xin, L., Song, W., Cao, Z., Zhang, J.: Neurolkh: combining deep learning model with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. Adv. Neural. Inf. Process. Syst. 34, 7472–7483 (2021)

    Google Scholar 

  22. Xing, Z., Tu, S.: A graph neural network assisted monte Carlo tree search approach to traveling salesman problem. IEEE Access 8, 108418–108428 (2020)

    Article  Google Scholar 

  23. Xu, L.: Deep bidirectional intelligence: AlphaZero, deep IA-search, deep IA-infer, and TPC causal learning. Appl. Inform. 5(1), 1–38 (2018). https://doi.org/10.1186/s40535-018-0052-y

    Article  Google Scholar 

  24. Xu, L.: Deep IA-BI and five actions in circling. In: International Conference on Intelligent Science and Big Data Engineering, pp. 1–21. Springer, New York, NY (2019). https://doi.org/10.1007/0-387-23081-5_11

  25. Zheng, J., He, K., Zhou, J., Jin, Y., Li, C.M.: Combining reinforcement learning with lin-kernighan-helsgaun algorithm for the traveling salesman problem. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 12445–12452 (2021)

    Google Scholar 

Download references

Acknowledgement.

This work was supported by the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102). Shikui Tu and Lei Xu are corresponding authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shikui Tu or Lei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Tu, S., Xu, L. (2024). Generalizing Graph Network Models for the Traveling Salesman Problem with Lin-Kernighan-Helsgaun Heuristics. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14447. Springer, Singapore. https://doi.org/10.1007/978-981-99-8079-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8079-6_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8078-9

  • Online ISBN: 978-981-99-8079-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics