Skip to main content

Impulsive Accelerated Reinforcement Learning for \(H_\infty \) Control

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14448))

Included in the following conference series:

  • 532 Accesses

Abstract

This paper revisits reinforcement learning for \(H_\infty \) control of affine nonlinear systems with partially unknown dynamics. By incorporating an impulsive momentum-based control into the conventional critic neural network, an impulsive accelerated reinforcement learning algorithm with a restart mechanism is proposed to improve the convergence speed and transient performance compared to traditional gradient descent-based techniques or continuously accelerated gradient methods. Moreover, by utilizing the quasi-periodic Lyapunov function method, sufficient condition for input-to-state stability with respect to approximation errors of the closed-loop system is established. A numerical example with comparisons is provided to illustrate the theoretical results.

This work is supported by the National Natural Science Foundation of China under Grant 62003104, the Guangxi Natural Science Foundation under Grant 2022GXNSFBA035649, the Guangxi Science and Technology Planning Project under Grant AD23026217, and the Guangxi University Natural Science and Technological Innovation Development Multiplication Plan Project under Grant 2023BZRC018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, X., Xu, M., Wei, Q.: Adaptive dynamic programming for nonlinear-constrained \(H_\infty \) control. IEEE Trans. Syst. Man Cybern. Syst. 53(7), 4393–4403 (2023)

    Article  Google Scholar 

  2. Luo, B., Wu, H.N., Huang, T.: Off-policy reinforcement learning for \(H_\infty \) control design. IEEE Trans. Cybern. 45(1), 65–76 (2014)

    Article  Google Scholar 

  3. Wang, D., Mu, C.X., Liu, D.R., Ma, H.W.: On mixed data and event driven design for adaptive-critic-based nonlinear \( H_\infty \) control. IEEE Trans. Neural Networks Learn. Syst. 29(4), 993–1005 (2017)

    Article  Google Scholar 

  4. Kiumarsi, B., Vamvoudakis, K.G., Modares, H., Lewis, F.L.: Optimal and autonomous control using reinforcement learning: a survey. IEEE Trans. Neural Networks Learn. Syst. 29(6), 2042–2062 (2017)

    Article  MathSciNet  Google Scholar 

  5. Başar, T., Bernhard, P.: \(H_\infty \) Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach. Springer, Boston (2008). https://doi.org/10.1007/978-0-8176-4757-5

    Book  MATH  Google Scholar 

  6. Liang, X., Liu, Y., Chen, T., Liu, M., Yang, Q.: Federated transfer reinforcement learning for autonomous driving. In: IFederated and Transfer Learning, pp. 357–371 (2022)

    Google Scholar 

  7. Stanly, J.J., Priyadarsini, M.J.P., Parameshachari, B.D., Karimi, H.R., Gurumoorthy, S.: Deep \(Q\)-network with reinforcement learning for fault detection in cyber-physical systems. J. Circuits, Syst. Comput. 31(9), 2250158 (2022)

    Article  Google Scholar 

  8. Liu, Q., Liu, Z., Xiong, B., Xu, W., Liu, Y.: Deep reinforcement learning-based safe interaction for industrial human-robot collaboration using intrinsic reward function. Adv. Eng. Inform. 49, 101360 (2021)

    Article  Google Scholar 

  9. Yang, Y., Wan, Y., Zhu, J., Lewis, F.L.: \(H_\infty \) tracking control for linear discrete-time systems: model-free \(Q\)-learning designs. IEEE Control Syst. Lett. 5(1), 175–180 (2020)

    Article  Google Scholar 

  10. Vamvoudakis, K.G., Ferraz, H.: Event-triggered \(H_\infty \) control for unknown continuous-time linear systems using \(Q\)-learning. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 1376–1381 (2016)

    Google Scholar 

  11. Wilson, A.C., Recht, B., Jordan, M.I.: A Lyapunov analysis of accelerated methods in optimization. J. Mach. Learn. Res. 22(1), 5040–5073 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Pertsch, K., Lee, Y., Lim, J.: Accelerating reinforcement learning with learned skill priors. In: Conference on Robot Learning, pp. 188–204 (2021)

    Google Scholar 

  13. Poveda, J.I., Li, N.: Robust hybrid zero-order optimization algorithms with acceleration via averaging in time. Automatica, pp. 109361 (2021)

    Google Scholar 

  14. Ochoa, D.E., Poveda, J.I.: Accelerated continuous-time approximate dynamic programming via data-assisted hybrid control. IFAC-PapersOnLine 55(12), 561–566 (2022)

    Article  Google Scholar 

  15. Su, W., Boyd, S., Candes, E.: A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights. J. Mach. Learn. Res. 17(153), 1–43 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Wang, D., He, H.B., Liu, D.R.: Adaptive critic nonlinear robust control: a survey. IEEE Trans. Cybern. 47(10), 3429–3451 (2017)

    Article  Google Scholar 

  17. Brendan, O.D., Candes, E.: Adaptive restart for accelerated gradient schemes. Found. Comput. Math. 15, 715–732 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kamalapurkar, R., Walters, P., Rosenfeld, J., Dixon, W.: Reinforcement Learning for Optimal Feedback Control. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78384-0

    Book  MATH  Google Scholar 

  19. Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks 3(5), 551–560 (1990)

    Article  Google Scholar 

  20. Chowdhary, G., Johnson, E.: Concurrent learning for convergence in adaptive control without persistency of excitation. In: 49th IEEE Conference on Decision and Control (CDC), pp. 3674–3679 (2010)

    Google Scholar 

  21. Kokolakis, N.M.T., Vamvoudakis, K.G.: Safety-aware pursuit-evasion games in unknown environments using gaussian processes and finite-time convergent reinforcement learning. IEEE Trans. Neural Networks Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3203977

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixian Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Luo, S., Jiang, Y. (2024). Impulsive Accelerated Reinforcement Learning for \(H_\infty \) Control. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14448. Springer, Singapore. https://doi.org/10.1007/978-981-99-8082-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8082-6_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8081-9

  • Online ISBN: 978-981-99-8082-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics