Abstract
Aiming to address the shortcomings of current object detection models, including a large number of parameters, the lack of accurate localization of target bounding boxes, and ineffective detection, this paper proposes a lightweight spatial location attention module (SLAM) that achieves adaptive adjustment of the attention weights of the location information in the feature map while greatly improving the feature representation capability of the network by learning the spatial location information in the input feature map. First, the SLAM module obtains the spatial distribution of the input feature map in the horizontal, vertical, and channel directions through the average pooling and maximum pooling operations, then generates the corresponding location attention weights by computing convolution and activation functions, and finally achieves the weighted feature map by aggregating the features along the three spatial directions respectively. Extensive experiments show that the SLAM module improves the detection performance of the model on the MS COCO dataset and the PASCAL VOC 2012 dataset with almost no additional computational overhead.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Chen, L., et al.: SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5659–5667 (2017)
Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111, 98–136 (2015)
Zhou, F.Y., Jin, L.P., Dong, J.: Review of convolutional neural networks. J. Comput. Sci. 40(06), 1229–1251 (2017)
Feng, D., et al.: Deep multi-modal object detection and semantic segmentation for autonomous driving: datasets, methods, and challenges. IEEE Trans. Intell. Transp. Syst. 22(3), 1341–1360 (2020)
Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)
Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13713–13722 (2021)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Li, B., Ouyang, W., Sheng, L., Zeng, X., Wang, X.: GS3D: an efficient 3D object detection framework for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1019–1028 (2019)
Li, C., et al.: Yolov6: a single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976 (2022)
Li, X., et al.: Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. Adv. Neural. Inf. Process. Syst. 33, 21002–21012 (2020)
Lin, T.Y., et al.: Microsoft coco: common objects in context (2014). arXiv preprint arXiv:1405.0312 (2019)
Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Liu, Y., Shao, Z., Hoffmann, N.: Global attention mechanism: retain information to enhance channel-spatial interactions. arXiv preprint arXiv:2112.05561 (2021)
Lu, H., Zhang, Q.: Application of deep convolutional neural networks in computer vision. Data Acquisition Process. 31(01), 1–17 (2016)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Tsotsos, J.K.: A Computational Perspective on Visual Attention. MIT Press, Cambridge (2021)
Wang, W., Shen, J.: A review of visual attention detection. J. Softw. 30(02), 416–439 (2019)
Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475 (2023)
Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-net: efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11534–11542 (2020)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Xu, S., et al.: PP-YOLOE: an evolved version of yolo (2022)
Yin, H., Chen, B., Chai, Y., Liu, Z.: A review of vision-based target detection and tracking. Acta Automatica Sinica 42(10), 1466–1489 (2016)
Acknowledgements
This paper is founded by Supported projects of key R & D programs in Hebei Province (No. 21373802D) and Artificial Intelligence Collaborative Education Project of the Ministry of Education (201801003011).
The GPU server in this paper is jointly funded by Shijiazhuang Wusuo Network Technology Co., LTD and Hebei Rouzun Technology Co., LTD.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Liu, C., Xu, Y., Zhong, J. (2024). SLAM: A Lightweight Spatial Location Attention Module for Object Detection. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14448. Springer, Singapore. https://doi.org/10.1007/978-981-99-8082-6_29
Download citation
DOI: https://doi.org/10.1007/978-981-99-8082-6_29
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8081-9
Online ISBN: 978-981-99-8082-6
eBook Packages: Computer ScienceComputer Science (R0)