Skip to main content

Efficient Collaboration via Interaction Information in Multi-agent System

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14448))

Included in the following conference series:

  • 539 Accesses

Abstract

Cooperative multi-agent reinforcement learning (CMARL) has shown promise in solving real-world scenarios. The interaction information between agents contains rich global information, which is easily neglected after perceiving other agents’ behavior. To tackle this problem, we propose Collaboration Interaction Information Modelling via Hypergraph (CIIMH), which first perceives the behavior of other agents by mutual information optimization and constructs the dynamic interaction information via hypergraph. Perceived behavioral features of other agents are further aggregated in the hypergraph convolutional network to obtain interaction information. We compare our method with three existing baselines on StarCraft II micromanagement tasks (SMAC), Level-based Foraging (LBF), and Hallway. Empirical results show that our method outperforms baseline methods on all maps.

Supported by National Natural Science Foundation of China (61772355, 61702055, 61876217, 62176175). Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. arXiv preprint arXiv:1612.00410 (2016)

  2. Bai, Y., Gong, C., Zhang, B., Fan, G., Hou, X., Lu, Y.: Cooperative multi-agent reinforcement learning with hypergraph convolution. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2022)

    Google Scholar 

  3. Bhalla, S., Ganapathi Subramanian, S., Crowley, M.: Deep multi agent reinforcement learning for autonomous driving. In: Goutte, C., Zhu, X. (eds.) Canadian AI 2020. LNCS (LNAI), vol. 12109, pp. 67–78. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47358-7_7

    Chapter  Google Scholar 

  4. Bretto, A.: Hypergraph Theory. An Introduction. Mathematical Engineering, Springer, Cham (2013). https://doi.org/10.1007/978-3-319-00080-0

    Book  MATH  Google Scholar 

  5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  6. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3558–3565 (2019)

    Google Scholar 

  7. Kiran, B.R., et al.: Deep reinforcement learning for autonomous driving: a survey. IEEE Trans. Intell. Transp. Syst. (2021)

    Google Scholar 

  8. Li, J., Yu, T.: Large-scale multi-agent deep reinforcement learning-based coordination strategy for energy optimization and control of proton exchange membrane fuel cell. Sustain. Energy Technol. Assess. 48, 101568 (2021)

    Google Scholar 

  9. Luo, Y.C., Tsai, C.W.: Multi-agent reinforcement learning based on two-step neighborhood experience for traffic light control. In: Proceedings of the 2021 ACM International Conference on Intelligent Computing and its Emerging Applications, pp. 28–33 (2021)

    Google Scholar 

  10. Van der Maaten, L., Hinton, G.: Visualizing data using T-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  11. Mahajan, A., Rashid, T., Samvelyan, M., Whiteson, S.: Maven: multi-agent variational exploration. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  12. Oliehoek, F.A., Amato, C.: A concise introduction to decentralized pomdps (2015)

    Google Scholar 

  13. Papoudakis, G., Christianos, F., Schäfer, L., Albrecht, S.V.: Benchmarking multi-agent deep reinforcement learning algorithms in cooperative tasks. arXiv preprint arXiv:2006.07869 (2020)

  14. Rashid, T., Samvelyan, M., Witt, C.S., Farquhar, G., Foerster, J., Whiteson, S.: Qmix: monotonic value function factorisation for deep multi-agent reinforcement learning. In: International Conference on Machine Learning, pp. 4292–4301 (2018)

    Google Scholar 

  15. Samvelyan, M., et al.: The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043 (2019)

  16. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296 (2017)

  17. Tufano, R., Scalabrino, S., Pascarella, L., Aghajani, E., Oliveto, R., Bavota, G.: Using reinforcement learning for load testing of video games. In: Proceedings of the 44th International Conference on Software Engineering, pp. 2303–2314 (2022)

    Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  19. Wang, J., Ren, Z., Liu, T., Yu, Y., Zhang, C.: Qplex: duplex dueling multi-agent q-learning. In: International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  20. Wang, T., Wang, J., Zheng, C., Zhang, C.: Learning nearly decomposable value functions via communication minimization. arXiv preprint arXiv:1910.05366 (2019)

  21. Wen, G., Fu, J., Dai, P., Zhou, J.: DTDE: a new cooperative multi-agent reinforcement learning framework. Innovation 2(4) (2021)

    Google Scholar 

  22. Wu, T., et al.: Multi-agent deep reinforcement learning for urban traffic light control in vehicular networks. IEEE Trans. Veh. Technol. 69(8), 8243–8256 (2020)

    Article  Google Scholar 

  23. Zhang, B., Bai, Y., Xu, Z., Li, D., Fan, G.: Efficient policy generation in multi-agent systems via hypergraph neural network. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) ICONIP 2022. LNCS, vol. 13624, pp. 219–230. Springer, Cham (2022)

    Google Scholar 

  24. Zhang, R., Zong, Q., Zhang, X., Dou, L., Tian, B.: Game of drones: multi-UAV pursuit-evasion game with online motion planning by deep reinforcement learning. IEEE Trans. Neural Networks Learn. Syst. 10, 7900–7909 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, M., Liu, Q., Huang, Z. (2024). Efficient Collaboration via Interaction Information in Multi-agent System. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14448. Springer, Singapore. https://doi.org/10.1007/978-981-99-8082-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8082-6_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8081-9

  • Online ISBN: 978-981-99-8082-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics