Skip to main content

PoShapley-BCFL: A Fair and Robust Decentralized Federated Learning Based on Blockchain and the Proof of Shapley-Value

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14448))

Included in the following conference series:

  • 725 Accesses

Abstract

Recently, blockchain-based Federated learning (BCFL) has emerged as a promising technology for promoting data sharing in the Internet of Things (IoT) without relying on a central authority, while ensuring data privacy, security, and traceability. However, it remains challenging to design an decentralized and appropriate incentive scheme that should promise a fair and efficient contribution evaluation for participants while defending against low-quality data attacks. Although Shapley-Value (SV) methods have been widely adopted in FL due to their ability to quantify individuals’ contributions, they rely on a central server for calculation and incur high computational costs, making it impractical for decentralized and large-scale BCFL scenarios. In this paper, we designed and evaluated PoShapley-BCFL, a new blockchain-based FL approach to accommodate both contribution evaluation and defense against inferior data attacks. Specifically, we proposed PoShapley, a Shapley-value-enabled blockchain consensus protocol tailored to support a fair and efficient contribution assessment in PoShapley-BCFL. It mimics the Proof-of-Work mechanism that allows all participants to compute contributions in parallel based on an improved lightweight SV approach. Following using the PoShapley protocol, we further designed a fair-robust aggregation rule to improve the robustness of PoShapley-BCFL when facing inferior data attacks. Extensive experimental results validate the accuracy and efficiency of PoShapley in terms of distance and time cost, and also demonstrate the robustness of our designed PoShapley-BCFL.

Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19090105), National Key Research and Development Project of China (2021ZD0110505), National Natural Science Foundation of China (U19B2042), the Zhejiang Provincial Key Research and Development Project (2023C01043 and 2022C03106), the University Synergy Innovation Program of Anhui Province (GXXT-2021-004), Academy Of Social Governance Zhejiang University, Fundamental Research Funds for the Central Universities (226-2022-00064), Hunan Province Graduate Innovation Project Fund (Grant No. CX20200042).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, Q., Wen, Y., Ding, T., Li, Y.: Resource sharing and payoff allocation in a three-stage system: integrating network DEA with the Shapley value method. Omega 85, 16–25 (2019). https://doi.org/10.1016/j.omega.2018.05.008

    Article  Google Scholar 

  2. Chen, S., et al.: A blockchain consensus mechanism that uses proof of solution to optimize energy dispatch and trading. Nat. Energy 7(6), 495–502 (2022). https://doi.org/10.1038/s41560-022-01027-4

    Article  MathSciNet  Google Scholar 

  3. Chen, Y., et al.: DIM-DS: dynamic incentive model for data sharing in federated learning based on smart contracts and evolutionary game theory. IEEE Internet Things J. (2022). https://doi.org/10.1109/JIOT.2022.3191671

  4. Cheng, Z., Pan, Y., Liu, Y., Wang, B., Deng, X., Zhu, C.: Vflchain: blockchain-enabled vertical federated learning for edge network data sharing. In: 2022 IEEE International Conference on Unmanned Systems (ICUS), Guangzhou, China, pp. 606–611. IEEE (2022). https://doi.org/10.1109/ICUS55513.2022.9987097. https://ieeexplore.ieee.org/document/9987097/

  5. Fan, S., Zhang, H., Zeng, Y., Cai, W.: Hybrid blockchain-based resource trading system for federated learning in edge computing. IEEE Internet Things J. 8(4), 2252–2264 (2021). https://doi.org/10.1109/JIOT.2020.3028101

    Article  Google Scholar 

  6. Ghorbani, A., Zou, J.: Data Shapley: Equitable Valuation of Data for Machine Learning. No. arXiv:1904.02868 (2019). https://doi.org/10.48550/arXiv.1904.02868. https://arxiv.org/abs/1904.02868. arXiv:1904.02868

  7. Ghorbani, A., Zou, J.: Data shapley: equitable valuation of data for machine learning. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 2242–2251. PMLR (2019). https://proceedings.mlr.press/v97/ghorbani19c.html

  8. Hu, D., Chen, J., Zhou, H., Yu, K., Qian, B., Xu, W.: Leveraging blockchain for multi-operator access sharing management in internet of vehicles. IEEE Trans. Veh. Technol. 71(3), 2774–2787 (2022). https://doi.org/10.1109/TVT.2021.3136364

    Article  Google Scholar 

  9. Imteaj, A., Thakker, U., Wang, S., Li, J., Amini, M.H.: A survey on federated learning for resource-constrained IoT devices. IEEE Internet Things J. 9(1), 1–24 (2022). https://doi.org/10.1109/JIOT.2021.3095077

    Article  Google Scholar 

  10. Issa, W., Moustafa, N., Turnbull, B., Sohrabi, N., Tari, Z.: Blockchain-based federated learning for securing internet of things: a comprehensive survey. ACM Comput. Surv. 55(9), 1–43 (2023). https://doi.org/10.1145/3560816

    Article  Google Scholar 

  11. Jiang, L., Zheng, H., Tian, H., Xie, S., Zhang, Y.: Cooperative federated learning and model update verification in blockchain-empowered digital twin edge networks. IEEE Internet Things J. 9(13), 11154–11167 (2022). https://doi.org/10.1109/JIOT.2021.3126207

    Article  Google Scholar 

  12. Kang, J., Xiong, Z., Niyato, D., Zou, Y., Zhang, Y., Guizani, M.: Reliable federated learning for mobile networks. IEEE Wirel. Commun. 27(2), 72–80 (2020). https://doi.org/10.1109/MWC.001.1900119

    Article  Google Scholar 

  13. Li, D., Guo, Q., Yang, C., Yan, H.: Trusted data sharing mechanism based on blockchain and federated learning in space-air-ground integrated networks. Wirel. Commun. Mob. Comput. 2022, 1–9 (2022). https://doi.org/10.1155/2022/5338876

    Article  Google Scholar 

  14. Lin, X., Wu, J., Bashir, A.K., Li, J., Yang, W., Piran, M.J.: Blockchain-based incentive energy-knowledge trading in IoT: joint power transfer and Ai design. IEEE Internet Things J. 9(16), 14685–14698 (2022). https://doi.org/10.1109/JIOT.2020.3024246

    Article  Google Scholar 

  15. Liu, Y., Ai, Z., Sun, S., Zhang, S., Liu, Z., Yu, H.: FedCoin: a peer-to-peer payment system for federated learning. In: Yang, Q., Fan, L., Yu, H. (eds.) Federated Learning. LNCS (LNAI), vol. 12500, pp. 125–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63076-8_9

    Chapter  Google Scholar 

  16. Liu, Z., Chen, Y., Yu, H., Liu, Y., Cui, L.: GTG-shapley: efficient and accurate participant contribution evaluation in federated learning. ACM Trans. Intell. Syst. Technol. 13(4) (2022). https://doi.org/10.1145/3501811

  17. Lo, S.K., et al.: Toward trustworthy AI: blockchain-based architecture design for accountability and fairness of federated learning systems. IEEE Internet Things J. 10(4), 3276–3284 (2023). https://doi.org/10.1109/JIOT.2022.3144450

    Article  Google Scholar 

  18. Ma, S., Cao, Y., Xiong, L.: Transparent contribution evaluation for secure federated learning on blockchain. In: 2021 IEEE 37th International Conference on Data Engineering Workshops (ICDEW), Chania, Greece, pp. 88–91. IEEE (2021). https://doi.org/10.1109/ICDEW53142.2021.00023. https://ieeexplore.ieee.org/document/9438754/

  19. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). Cryptography Mailing list at https://metzdowd.com

  20. Qinnan, Z., Jianming, Z., Sheng, G., Zehui, X., Qingyang, D., Guirong, P.: Incentive mechanism for federated learning based on blockchain and bayesian game. SCIENTIA SINICA Informationis 52(6), 971- (2022). https://doi.org/10.1360/SSI-2022-0020. https://www.sciengine.com/publisher/ScienceChinaPress/journal/SCIENTIASINICAInformationis/52/6/10.1360/SSI-2022-0020

  21. Shapley, L.S.: A value for n-person games. Contributions to the Theory of Games (1953)

    Google Scholar 

  22. Shen, M., Duan, J., Zhu, L., Zhang, J., Du, X., Guizani, M.: Blockchain-based incentives for secure and collaborative data sharing in multiple clouds. IEEE J. Sel. Areas Commun. 38(6), 1229–1241 (2020). https://doi.org/10.1109/JSAC.2020.2986619

    Article  Google Scholar 

  23. Song, T., Tong, Y., Wei, S.: Profit allocation for federated learning. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 2577–2586 (2019). https://doi.org/10.1109/BigData47090.2019.9006327

  24. Touati, S., Radjef, M.S., Sais, L.: A Bayesian Monte Carlo method for computing the shapley value: application to weighted voting and bin packing games. Comput. Oper. Res. 125, 105094 (2021). https://doi-org-s.libyc.nudt.edu.cn:443/10.1016/j.cor.2020.105094. https://www-sciencedirect-com-s.libyc.nudt.edu.cn:443/science/article/pii/S0305054820302112

  25. Wang, T., Rausch, J., Zhang, C., Jia, R., Song, D.: A Principled Approach to Data Valuation for Federated Learning. No. arXiv:2009.06192 (2020). https://doi.org/10.48550/arXiv.2009.06192. https://arxiv.org/abs/2009.06192. arXiv:2009.06192

  26. Wang, X., Zhao, Y., Qiu, C., Liu, Z., Nie, J., Leung, V.C.M.: Infedge: a blockchain-based incentive mechanism in hierarchical federated learning for end-edge-cloud communications. IEEE J. Sel. Areas Commun. (2022). https://doi.org/10.1109/JSAC.2022.3213323

  27. Weng, J., Weng, J., Huang, H., Cai, C., Wang, C.: Fedserving: a federated prediction serving framework based on incentive mechanism. In: IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, pp. 1–10 (2021). https://doi.org/10.1109/INFOCOM42981.2021.9488807

  28. Wu, W., et al.: Consortium blockchain-enabled smart ESG reporting platform with token-based incentives for corporate crowdsensing. Comput. Ind. Eng. 172, 108456 (2022). https://doi.org/10.1016/j.cie.2022.108456

    Article  Google Scholar 

  29. Xu, L., Bao, T., Zhu, L.: Blockchain empowered differentially private and auditable data publishing in industrial iot. IEEE Trans. Industr. Inf. 17(11), 7659–7668 (2021). https://doi.org/10.1109/TII.2020.3045038

    Article  Google Scholar 

  30. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019). https://doi.org/10.1145/3298981

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Wu or Cheng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, Z., Liu, Y., Wu, C., Pan, Y., Zhao, L., Zhu, C. (2024). PoShapley-BCFL: A Fair and Robust Decentralized Federated Learning Based on Blockchain and the Proof of Shapley-Value. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14448. Springer, Singapore. https://doi.org/10.1007/978-981-99-8082-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8082-6_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8081-9

  • Online ISBN: 978-981-99-8082-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics