Skip to main content

Interactive Attention-Based Graph Transformer for Multi-intersection Traffic Signal Control

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14448))

Included in the following conference series:

  • 633 Accesses

Abstract

With the exponential growth in motor vehicle numbers, urban traffic congestion has become a pressing issue. Traffic signal control plays a pivotal role in alleviating the problem. In modeling multi-intersection, most studies focus on communication with regional intersections. They rarely consider the cross-regional. To address the above limitation, we construct an interactive attention-based graph transformer network for traffic signal control (GTLight). Specifically, the model considers correlations between cross-regional intersections using an interactive attention mechanism. In addition, the model designs a phase-timing optimization algorithm to solve the problem of overestimation of Q-value in signal timing strategies. We validate the effectiveness of GTLight on different traffic datasets. Compared to the recent graph-based reinforcement learning method, the average travel time is improved by 28.16%, 26.56%, 25.79%, 26.46%, and 19.59%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://cityflow-project.github.io.

  2. 2.

    https://github.com/ddlyn/GTLight.

References

  1. Fan, Z., Harper, C.D.: Congestion and environmental impacts of short car trip replacement with micromobility modes. Transp. Res. Part D: Transp. Environ. 103, 103173 (2022)

    Article  Google Scholar 

  2. Robertson, D.I., Bretherton, R.D.: Optimizing networks of traffic signals in real time-the SCOOT method. IEEE Trans. Veh. Technol. 40(1), 11–15 (1991)

    Article  Google Scholar 

  3. Luk, J.: Two traffic-responsive area traffic control methods: SCAT and SCOOT. Traff. Eng. Control 25(1) (1984)

    Google Scholar 

  4. Liao, X.C., Qiu, W.J., Wei, F.F., Chen, W.N.: Combining traffic assignment and traffic signal control for online traffic flow optimization. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) ICONIP 2022. CCIS, vol. 1793, pp. 150–163. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-1645-0_13

  5. Noaeen, M., et al.: Reinforcement learning in urban network traffic signal control: a systematic literature review. Exp. Syst. Appl. 199, 116830 (2022)

    Google Scholar 

  6. Wei, H., Zheng, G., Yao, H., Li, Z.: Intellilight: a reinforcement learning approach for intelligent traffic light control. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2496–2505 (2018)

    Google Scholar 

  7. Kuang, L., Zheng, J., Li, K., Gao, H.: Intelligent traffic signal control based on reinforcement learning with state reduction for smart cities. ACM Trans. Internet Technol. 21(4), 1–24 (2021)

    Article  Google Scholar 

  8. Li, L., Lv, Y., Wang, F.Y.: Traffic signal timing via deep reinforcement learning. IEEE/CAA J. Automat. Sinica 3(3), 247–254 (2016)

    Article  MathSciNet  Google Scholar 

  9. Wu, T., et al.: Multi-agent deep reinforcement learning for urban traffic light control in vehicular networks. IEEE Trans. Veh. Technol. 69(8), 8243–8256 (2020)

    Google Scholar 

  10. Ying, Z., Cao, S., Liu, X., Ma, Z., Ma, J., Deng, R.H.: PrivacySignal: privacy-preserving traffic signal control for intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 23(9), 16290–16303 (2022)

    Article  Google Scholar 

  11. Tan, T., Bao, F., Deng, Y., Jin, A., Dai, Q., Wang, J.: Cooperative deep reinforcement learning for large-scale traffic grid signal control. IEEE Trans. Cybernet. 50(6), 2687–2700 (2020)

    Article  Google Scholar 

  12. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6000–6010 (2017)

    Google Scholar 

  13. Zheng, G., et al.: Diagnosing reinforcement learning for traffic signal control. arXiv preprint arXiv:1905.04716 (2019)

  14. Chu, T., Wang, J., Codecà, L., Li, Z.: Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Trans. Intell. Transp. Syst. 21(3), 1086–1095 (2020)

    Article  Google Scholar 

  15. Arel, I., Liu, C., Urbanik, T., Kohls, A.G.: Reinforcement learning-based multi-agent system for network traffic signal control. IET Intel. Transp. Syst. 4(2), 128–135 (2010)

    Article  Google Scholar 

  16. El-Tantawy, S., Abdulhai, B., Abdelgawad, H.: Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale application on downtown toronto. IEEE Trans. Intell. Transp. Syst. 14(3), 1140–1150 (2013)

    Article  Google Scholar 

  17. Wei, H., et al.: PressLight: learning max pressure control to coordinate traffic signals in arterial network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1290–1298 (2019)

    Google Scholar 

  18. Zhang, M., Wu, S., Yu, X., Liu, Q., Wang, L.: Dynamic graph neural networks for sequential recommendation. IEEE Trans. Knowl. Data Eng. 35(5), 4741–4753 (2023)

    Google Scholar 

  19. Zhong, T., Xu, Z., Zhou, F.: Probabilistic graph neural networks for traffic signal control. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4085–4089 (2021)

    Google Scholar 

  20. Wang, Y., Xu, T., Niu, X., Tan, C., Chen, E., Xiong, H.: STMARL: a spatio-temporal multi-agent reinforcement learning approach for cooperative traffic light control. IEEE Trans. Mob. Comput. 21(6), 2228–2242 (2022)

    Article  Google Scholar 

  21. Zeng, Z.: GraphLight: graph-based reinforcement learning for traffic signal control. In: Proceedings of the IEEE International Conference on Computer and Communication Systems, pp. 645–650 (2021)

    Google Scholar 

  22. He, L., Li, Q., Wu, L., Wang, M., Li, J., Wu, D.: A spatial-temporal graph attention network for multi-intersection traffic light control. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1–8 (2021)

    Google Scholar 

  23. Wu, L., Wang, M., Wu, D., Wu, J.: DynSTGAT: dynamic spatial-temporal graph attention network for traffic signal control. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, pp. 2150–2159 (2021)

    Google Scholar 

  24. Wang, M., Wu, L., Li, M., Wu, D., Shi, X., Ma, C.: Meta-learning based spatial-temporal graph attention network for traffic signal control. Knowl. Based Syst. 250, 109166 (2022)

    Article  Google Scholar 

  25. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

  26. Zou, F., Shen, L., Jie, Z., Zhang, W., Liu, W.: A sufficient condition for convergences of ADAM and RMSPROP. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11119–11127 (2019)

    Google Scholar 

  27. Koonce, P., Rodegerdts, L.: Traffic signal timing manual. Tech. rep., United States. Federal Highway Administration (2008)

    Google Scholar 

  28. Cools, S.B., Gershenson, C., D’Hooghe, B.: Self-organizing traffic lights: a realistic simulation. In: Advances in Applied Self-Organizing Systems, pp. 45–55 (2013)

    Google Scholar 

  29. Wei, H., et al.: CoLight: learning network-level cooperation for traffic signal control. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1913–1922 (2019)

    Google Scholar 

  30. Yi, Y., Li, G., Wang, Y., Lu, Z.: Learning to share in multi-agent reinforcement learning. In: Proceedings of the 36th Annual Conference on Neural Information Processing Systems, pp. 1–13 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 62176088), the Key Science and Technology Research Project of Henan Province of China (Grant No. 22102210067, 222102210022), and the Program for Science and Technology Development of Henan Province (No. 212102210412 and 202102310198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianwen Ning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, Y., Ning, N., Li, H., Wang, L., Zhang, Y., Zhou, Y. (2024). Interactive Attention-Based Graph Transformer for Multi-intersection Traffic Signal Control. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14448. Springer, Singapore. https://doi.org/10.1007/978-981-99-8082-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8082-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8081-9

  • Online ISBN: 978-981-99-8082-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics