Skip to main content

CLF-AIAD: A Contrastive Learning Framework for Acoustic Industrial Anomaly Detection

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Acoustic Industrial Anomaly Detection (AIAD) has received a great deal of attention as a technique to discover faults or malicious activity, allowing for preventive measures to be more effectively targeted. The essence of AIAD is to learn the compact distribution of normal acoustic data and detect outliers as anomalies during testing. However, recent AIAD work does not capture the dependencies and dynamics of Acoustic Industrial Data (AID). To address this issue, we propose a novel Contrastive Learning Framework (CLF) for AIAD, known as CLF-AIAD. Our method introduces a multi-grained contrastive learning-based framework to extract robust normal AID representations. Specifically, we first employ a projection layer and a novel context-based contrast method to learn robust temporal vectors. Building upon this, we then introduce a sample-wise contrasting-based module to capture local invariant characteristics, improving the discriminative capabilities of the model. Finally, a transformation classifier is introduced to bolster the performance of the primary task under a self-supervised learning framework. Extensive experiments on two typical industrial datasets, MIMII and ToyADMOS, demonstrate that our proposed CLF-AIAD effectively detects various real-world defects and improves upon the state-of-the-art in unsupervised industrial anomaly detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bigoni, C., Hesthaven, J.S.: Simulation-based anomaly detection and damage localization: an application to structural health monitoring. Comput. Methods Appl. Mech. Eng. 363, 112896 (2020)

    Article  MathSciNet  Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  3. Cui, Y., Liu, Z., Lian, S.: A survey on unsupervised industrial anomaly detection algorithms. arXiv preprint: 2204.11161 (2022)

    Google Scholar 

  4. Defard, T., Setkov, A., Loesch, A., Audigier, R.: Padim: a patch distribution modeling framework for anomaly detection and localization. In: Pattern Recognition, pp. 475–489 (2021)

    Google Scholar 

  5. Dohi, K., Endo, T., Purohit, H., Tanabe, R., Kawaguchi, Y.: Flow-based self-supervised density estimation for anomalous sound detection. In: Proceedings of ICASSP, pp. 336–340 (2021)

    Google Scholar 

  6. Dohi, K., Imoto, K., et al.: Description and discussion on dcase 2022 challenge task 2: Unsupervised anomalous sound detection for machine condition monitoring applying domain generalization techniques. arXiv preprint: 2206.05876 (2022)

    Google Scholar 

  7. Eldele, E., Ragab, M., Chen, Z., Wu, M., et al.: Time-series representation learning via temporal and contextual contrasting, pp. 2352–2359, August 2021

    Google Scholar 

  8. Eltouny, K., Gomaa, M., Liang, X.: Unsupervised learning methods for data-driven vibration-based structural health monitoring: a review. Sensors 23(6), 3290 (2023)

    Article  Google Scholar 

  9. Gong, D., Liu, L., Le, V., Saha, B., Mansour, M.R., et al.: Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of ICCV, pp. 1705–1714 (2019)

    Google Scholar 

  10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Hojjati, H., Armanfard, N.: Dasvdd: Deep autoencoding support vector data descriptor for anomaly detection. arXiv preprint: 2106.05410 (2021)

    Google Scholar 

  13. Hojjati, H., Armanfard, N.: Self-supervised acoustic anomaly detection via contrastive learning. In: Proceedings of ICASSP, pp. 3253–3257 (2022)

    Google Scholar 

  14. Jiang, A., Zhang, W.Q., et al.: Unsupervised anomaly detection and localization of machine audio: a gan-based approach. In: Proceedings of ICASSP, pp. 1–5 (2023)

    Google Scholar 

  15. Kawaguchi, Y., Imoto, K., et al.: Description and discussion on dcase 2021 challenge task 2: Unsupervised anomalous sound detection for machine condition monitoring under domain shifted conditions. arXiv preprint: 2106.04492 (2021)

    Google Scholar 

  16. Kim, M.S., Yun, J.P., Lee, S., Park, P.: Unsupervised anomaly detection of lm guide using variational autoencoder. In: Proceedings of ATEE, pp. 1–5 (2019)

    Google Scholar 

  17. Koizumi, Y., Saito, S., Uematsu, H., Harada, N.: Optimizing acoustic feature extractor for anomalous sound detection based on neyman-pearson lemma. In: Proceedings of EUSIPCO, pp. 698–702 (2017)

    Google Scholar 

  18. Koizumi, Y., Saito, S., Uematsu, H., Harada, N., Imoto, K.: Toyadmos: a dataset of miniature-machine operating sounds for anomalous sound detection. In: Proceedings of WASPAA, pp. 313–317 (2019)

    Google Scholar 

  19. Liu, Y., Garg, S., Nie, J., Zhang, Y., et al.: Deep anomaly detection for time-series data in industrial IoT: a communication-efficient on-device federated learning approach. IEEE Internet Things J. 8(8), 6348–6358 (2020)

    Article  Google Scholar 

  20. Liu, Z., Tang, H., Michiels, S., Joosen, W., Hughes, D.: Unsupervised acoustic anomaly detection systems based on gaussian mixture density neural network. In: Proceedings of EUSIPCO, pp. 259–263 (2022)

    Google Scholar 

  21. Lu, H., Fu, Y., Qin, H., Huang, S., et al.: Anomalous sounds detection using autoencoder and classification methods. Technival report, DCASE2021 Challenge (2021)

    Google Scholar 

  22. McLachlan, G.J.: Mahalanobis distance. Resonance 4(6), 20–26 (1999)

    Article  Google Scholar 

  23. Patcha, A.: An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput. Netw. 51(12), 3448–3470 (2007)

    Article  Google Scholar 

  24. Purohit, H., Tanabe, R., et al.: Mimii dataset: sound dataset for malfunctioning industrial machine investigation and inspection. arXiv preprint: 1909.09347 (2019)

    Google Scholar 

  25. Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. Proc. IEEE 109(5), 756–795 (2021)

    Article  Google Scholar 

  26. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. Advances in neural information processing systems 29 (2016)

    Google Scholar 

  27. Suefusa, K., Nishida, T., Purohit, H., et al.: Anomalous sound detection based on interpolation deep neural network. In: Proceedings of ICASSP, pp. 271–275 (2020)

    Google Scholar 

  28. Taheri, H., Koester, L.W., et al.: In situ additive manufacturing process monitoring with an acoustic technique: clustering performance evaluation using k-means algorithm. J. Manuf. Sci. Eng. 141(4) (2019)

    Google Scholar 

  29. Trapp, M., Chen, F.: Automotive buzz, squeak and rattle: mechanisms, analysis, evaluation and prevention. Elsevier (2011)

    Google Scholar 

  30. Tuli, S., Casale, G., et al.: Tranad: Deep transformer networks for anomaly detection in multivariate time series data. arXiv preprint: 2201.07284 (2022)

    Google Scholar 

  31. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., et al.: Attention is all you need. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  32. Yue, Z., Wang, Y., Duan, J., Yang, T., et al.: Ts2vec: Towards universal representation of time series. In: Proceedings of AAAI, vol. 36, pp. 8980–8987 (2022)

    Google Scholar 

  33. Yun, H., Kim, H., Jeong, Y.H., Jun, M.B.: Autoencoder-based anomaly detection of industrial robot arm using stethoscope based internal sound sensor. J. Intell. Manuf. 34(3), 1427–1444 (2023)

    Article  Google Scholar 

  34. Zhang, W., Yang, D., Peng, H., Wu, W., et al.: Deep reinforcement learning based resource management for dnn inference in industrial iot. IEEE Trans. Veh. Technol. 70(8), 7605–7618 (2021)

    Article  Google Scholar 

  35. Zhang, Z., Zhao, Z., Zhang, X., et al.: Industrial anomaly detection with domain shift: a real-world dataset and masked multi-scale reconstruction. arXiv preprint: 2304.02216 (2023)

    Google Scholar 

Download references

Acknowledgements

Research Fund KU Leuven in the context of the ReSOS project (C3/20/014) and by Ford Motor Company in the context of the Ford-KU Leuven Research Alliance project Automated S &R (KUL0134).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoyi Liu , Sam Michiels or Danny Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z. et al. (2024). CLF-AIAD: A Contrastive Learning Framework for Acoustic Industrial Anomaly Detection. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1961. Springer, Singapore. https://doi.org/10.1007/978-981-99-8126-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8126-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8125-0

  • Online ISBN: 978-981-99-8126-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics