Skip to main content

Graph Multi-dimensional Feature Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Graph Neural Networks (GNNs) have attracted extensive interest in the world because of its superior performance in the field of graph representation learning. Most GNNs have a message passing mechanism to update node representations by aggregating and transforming input from node neighbors. The current methods use the same strategy to aggregate information from each feature dimension. However, according to current papers, the model will be more practical if the feature information of each dimension can be treated differently throughout the aggregating process. In this paper, we introduces a novel Graph Neural Network-Graph Multi-Dimensional Feature Network (GMDFN). The method is accomplished by mining feature information from diverse dimensions and aggregating information using various strategies. Furthermore, a self-supervised learning module is built to keep the node feature information from being destroyed too much in the aggregation process to avoid over-smoothing. A large number of experiments on different real-world datasets have shown that the model outperforms various current GNN models and is more robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, L., Yao, L., Kanhere, S.S., Wang, X., Liu, W., Yang, Z.: Spatio-temporal graph convolutional and recurrent networks for citywide passenger demand prediction. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2293–2296 (2019)

    Google Scholar 

  2. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  3. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems 29 (2016)

    Google Scholar 

  4. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  5. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  6. Jin, W., Derr, T., Liu, H., Wang, Y., Wang, S., Liu, Z., Tang, J.: Self-supervised learning on graphs: Deep insights and new direction. arXiv preprint arXiv:2006.10141 (2020)

  7. Jin, W., Derr, T., Wang, Y., Ma, Y., Liu, Z., Tang, J.: Node similarity preserving graph convolutional networks. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 148–156 (2021)

    Google Scholar 

  8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  9. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  10. Li, Y., Jin, W., Xu, H., Tang, J.: Deeprobust: a platform for adversarial attacks and defenses. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 16078–16080 (2021)

    Google Scholar 

  11. Liu, M., Gao, H., Ji, S.: Towards deeper graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 338–348 (2020)

    Google Scholar 

  12. Liu, Y., et al.: Graph self-supervised learning: a survey. IEEE Trans. Knowl. Data Eng. 35(6), 5879–5900 (2022)

    Google Scholar 

  13. Ma, Y., Liu, X., Zhao, T., Liu, Y., Tang, J., Shah, N.: A unified view on graph neural networks as graph signal denoising. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 1202–1211 (2021)

    Google Scholar 

  14. Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power for node classification. arXiv preprint arXiv:1905.10947 (2019)

  15. Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: towards deep graph convolutional networks on node classification. arXiv preprint arXiv:1907.10903 (2019)

  16. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

    Article  Google Scholar 

  17. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)

    Article  Google Scholar 

  18. Tang, L., Liu, H.: Scalable learning of collective behavior based on sparse social dimensions. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 1107–1116 (2009)

    Google Scholar 

  19. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  20. Wang, X., Flannery, S.T., Kihara, D.: Protein docking model evaluation by graph neural networks. Front. Mol. Biosci. 8, 647915 (2021)

    Article  Google Scholar 

  21. Wang, Y., Liu, Z., Fan, Z., Sun, L., Yu, P.S.: Dskreg: differentiable sampling on knowledge graph for recommendation with relational gnn. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3513–3517 (2021)

    Google Scholar 

  22. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning, pp. 6861–6871. PMLR (2019)

    Google Scholar 

  23. Wu, H., Wang, C., Tyshetskiy, Y., Docherty, A., Lu, K., Zhu, L.: Adversarial examples on graph data: Deep insights into attack and defense. arXiv preprint arXiv:1903.01610 (2019)

  24. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  25. Xiao, Y., Pei, Q., Xiao, T., Yao, L., Liu, H.: Mutualrec: joint friend and item recommendations with mutualistic attentional graph neural networks. J. Netw. Comput. Appl. 177, 102954 (2021)

    Article  Google Scholar 

  26. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  27. Yao, M., Yu, H., Bian, H.: Defending against adversarial attacks on graph neural networks via similarity property. AI Commun. 36(1), 27–39 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  28. You, Y., Chen, T., Wang, Z., Shen, Y.: When does self-supervision help graph convolutional networks? In: International Conference on Machine Learning, pp. 10871–10880. PMLR (2020)

    Google Scholar 

  29. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. IEEE Trans. Knowl. Data Eng. 34(1), 249–270 (2020)

    Article  Google Scholar 

  30. Zhu, D., Zhang, Z., Cui, P., Zhu, W.: Robust graph convolutional networks against adversarial attacks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1399–1407 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (12361072), Xinjiang Natural Science Foundation (2021D01C078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haizheng Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, M., Yu, H., Bian, H. (2024). Graph Multi-dimensional Feature Network. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1961. Springer, Singapore. https://doi.org/10.1007/978-981-99-8126-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8126-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8125-0

  • Online ISBN: 978-981-99-8126-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics