Skip to main content

Solving Localized Wave Solutions of the Nonlinear PDEs Using Physics-Constraint Deep Learning Method

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

In the field of nonlinear science, localized waves hold significant research value, and their theories have found applications across various domains. Partial Differential Equations (PDEs) serve as crucial tools for studying localized waves in nonlinear systems, and numerical methods for PDEs have been widely employed in the numerical simulation of localized waves. However, the complexity of solving partial differential equations has impeded progress in the study of nonlinear localized waves. In recent years, with the rapid advancement of deep learning, Physics-Informed Neural Networks (PINNs) have emerged as powerful tools for solving PDEs and simulating multiphysical phenomena, attracting significant attention from researchers. In this study, we apply an improved PINNs approach to solve PDEs governing localized waves. The enhanced PINNs not only incorporates the constraints of the PDEs but also introduces gradient information constraints, further enriching the physical constraints within the neural network model. Additionally, we employ an adaptive learning method to update the weight coefficients of the loss function and dynamically adjust the relative importance of each constraint term in the entire loss function to expedite the training process. In the experimental section, we selected Boussinesq equation and nonlinear Schrödinger equation (NLSE) for the study and evaluated the accuracy of localized wave simulation results through error analysis. The experimental results indicate that the improved PINNs are significantly better than traditional PINNs, with shorter training time and more accurate prediction results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., Benediktsson, J.A.: Deep learning for hyperspectral image classification: an overview. IEEE Trans. Geosci. Remote Sens. 57(9), 6690–6709 (2019)

    Article  Google Scholar 

  2. Guo, Y., Cao, X., Liu, B., Gao, M.: Cloud detection for satellite imagery using attention-based u-net convolutional neural network. Symmetry 12(6), 1056 (2020)

    Article  Google Scholar 

  3. Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 604–624 (2020)

    Article  MathSciNet  Google Scholar 

  4. Guo, Y., Cao, X., Liu, B., Peng, K.: El niño index prediction using deep learning with ensemble empirical mode decomposition. Symmetry 12(6), 893 (2020)

    Article  Google Scholar 

  5. Yin, J., Gao, Z., Han, W.: Application of a radar echo extrapolation-based deep learning method in strong convection nowcasting. Earth Space Sci. 8(8), e2020EA001621 (2021)

    Google Scholar 

  6. Guo, Y., Cao, X., Liu, B., Gao, M.: Solving partial differential equations using deep learning and physical constraints. Appl. Sci. 10(17), 5917 (2020)

    Article  Google Scholar 

  7. Guo, Y., Cao, X., Peng, K.: Application of improved physics-informed deep learning based on activation function for solving nonlinear soliton equation. In: 2023 International Joint Conference on Neural Networks (IJCNN), pp. 1–10. IEEE (2023)

    Google Scholar 

  8. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, S., Mao, Z., Wang, Z., Yin, M., Karniadakis, G.E.: Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta. Mech. Sin. 37(12), 1727–1738 (2021). https://doi.org/10.1007/s10409-021-01148-1

    Article  MathSciNet  Google Scholar 

  10. Manafian, J., Lakestani, M.: N-lump and interaction solutions of localized waves to the (2+ 1)-dimensional variable-coefficient caudrey-dodd-gibbon-kotera-sawada equation. J. Geom. Phys. 150, 103598 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu, J., Lu, L., Meng, X., Karniadakis, G.E.: Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems. Comput. Methods Appl. Mech. Eng. 393, 114823 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xiang, Z., Peng, W., Liu, X., Yao, W.: Self-adaptive loss balanced physics-informed neural networks. Neurocomputing 496, 11–34 (2022)

    Article  Google Scholar 

  13. Groenendijk, R., Karaoglu, S., Gevers, T., Mensink, T.: Multi-loss weighting with coefficient of variations. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1469–1478 (2021)

    Google Scholar 

  14. Welford, B.: Note on a method for calculating corrected sums of squares and products. Technometrics 4(3), 419–420 (1962)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Y., Cao, X., Zhou, M., Peng, K., Tian, W. (2024). Solving Localized Wave Solutions of the Nonlinear PDEs Using Physics-Constraint Deep Learning Method. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1961. Springer, Singapore. https://doi.org/10.1007/978-981-99-8126-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8126-7_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8125-0

  • Online ISBN: 978-981-99-8126-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics