Skip to main content

STA-Net: Reconstruct Missing Temperature Data of Meteorological Stations Using a Spatiotemporal Attention Neural Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Reconstructing the missing meteorological site temperature data is of great significance for analyzing climate change and predicting related natural disasters, but is a trickily and urgently solved problem. In the past, various interpolation methods were used to solve this problem, but these methods basically ignored the temporal correlation of the site itself. Recently, the methods based on machine learning have been widely studied to solve this problem. However, these methods tend to handle the missing value situation of single site, neglecting spatial correlation between sites. Hence, we put forward a new spatiotemporal attention neural network (STA-Net) for reconstructing missing data in multiple meteorological sites. The STA-Net utilizes the currently state-of-the-art encoder-decoder deep learning architecture and is composed of two sub-networks which include local spatial attention mechanism (LSAM) and multidimensional temporal self-attention mechanism (MTSAM), respectively. Moreover, a multiple-meteorological-site data processing method is developed to generate matrix datasets containing spatiotemporal information so the STA-Net can be trained and tested. To evaluate the STA-Net, a large number of experiments on real Tibet and Qamdo datasets with the missing rates of 25%, 50% and 75%, respectively, are conducted, meanwhile compared with U-Net, PConvU-Net and BiLSTM. Experimental results have showed that our data processing method is effective and meantime and our STA-Net achieves greater reconstruction effect. In the case with the missing rate of 25% on Tibet test datasets and compared to the other three methods, the MAE declines by 60.21%, 36.42% and 12.70%; the RMSE declines by 56.28%, 32.03% and 14.17%; the R2 increases by 0.75%, 0.20% and 0.07%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peterson, T.C., Vose, R.S.: An overview of the global historical climatology network temperature database. Bull. Am. Meteor. Soc. 78(12), 2837–2850 (1997)

    Article  Google Scholar 

  2. Lompar, M., Lalić, B., Dekić, L., Petrić, M.: Filling gaps in hourly air temperature data using debiased ERA5 data. Atmosphere 10(1), 13 (2019). Publisher: MDPI

    Google Scholar 

  3. Lara-Estrada, L., Rasche, L., Sucar, L.E., Schneider, U.A.: Inferring missing climate data for agricultural planning using Bayesian networks. Land 7(1), 4 (2018). Publisher: MDPI

    Google Scholar 

  4. Huang, M., et al.: Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3(5), 772–779 (2019). Publisher: Nature Publishing Group UK London

    Google Scholar 

  5. Henn, B., Raleigh, M.S., Fisher, A., Lundquist, J.D.: A comparison of methods for filling gaps in hourly near-surface air temperature data. J. Hydrometeorol. 14(3), 929–945 (2013). Publisher: American Meteorological Society

    Google Scholar 

  6. Afrifa-Yamoah, E., Mueller, U.A., Taylor, S., Fisher, A.: Missing data imputation of high-resolution temporal climate time series data. Meteorol. Appl. 27(1), 1873 (2020). Publisher: Wiley Online Library

    Google Scholar 

  7. Park, J., Yoon, D., Seol, S.J., Byun, J.: Reconstruction of seismic field data with convolutional U-Net considering the optimal training input data. In: SEG International Exposition and Annual Meeting. OnePetro (2019)

    Google Scholar 

  8. Daly, S., Davis, R., Ochs, E., Pangburn, T.: An approach to spatially distributed snow modelling of the Sacramento and San Joaquin Basins, California. Hydrol. Processes 14(18), 3257–3271 (2000). Publisher: Wiley Online Library

    Google Scholar 

  9. Tobin, C., Nicotina, L., Parlange, M.B., Berne, A., Rinaldo, A.: Improved interpolation of meteorological forcings for hydrologic applications in a swiss alpine region. J. Hydrol. 401(1–2), 77–89 (2011). Publisher: Elsevier

    Google Scholar 

  10. Garen, D.C., Johnson, G.L., Hanson, C.L.: Mean areal precipitation for daily hydrologic modeling in mountainous regions 1. JAWRA J. Am. Water Resourc. Assoc. 30(3), 481–491 (1994). Publisher: Wiley Online Library

    Google Scholar 

  11. Pape, R., Wundram, D., Löffler, J.: Modelling near-surface temperature conditions in high mountain environments: an appraisal. Climate Res. 39(2), 99–109 (2009)

    Article  Google Scholar 

  12. Stahl, K., Moore, R., Floyer, J., Asplin, M., McKendry, I.: Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric. Forest Meteorol. 139(3–4), 224–236 (2006). Publisher: Elsevier

    Google Scholar 

  13. Belachsen, I., Broday, D.M.: Imputation of missing pm2. 5 observations in a network of air quality monitoring stations by a new knn method. Atmosphere 13(11), 1934 (2022). Publisher: MDPI

    Google Scholar 

  14. Chen, M., Zhu, H., Chen, Y., Wang, Y.: A novel missing data imputation approach for time series air quality data based on logistic regression. Atmosphere 13(7), 1044 (2022). Publisher: MDPI

    Google Scholar 

  15. Kihoro, J., Athiany, K., et al.: Imputation of incomplete nonstationary seasonal time series data. Math. Theory Model. 3(12), 142–154 (2013)

    Google Scholar 

  16. Wang, H., Yuan, Z., Chen, Y., Shen, B., Wu, A.: An industrial missing values processing method based on generating model. Comput. Netw. 158, 61–68 (2019). Publisher: Elsevier

    Google Scholar 

  17. Cao, W., Wang, D., Li, J., Zhou, H., Li, L., Li, Y.: Brits: bidirectional recurrent imputation for time series. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  18. Zhang, Y.F., Thorburn, P.J., Xiang, W., Fitch, P.: SSIM - A deep learning approach for recovering missing time series sensor data. IEEE Internet Things J. 6(4), 6618–6628 (2019). Publisher: IEEE

    Google Scholar 

  19. Zhang, Y., Thorburn, P.J.: A dual-head attention model for time series data imputation. Comput. Electron. Agric. 189, 106377 (2021). Publisher: Elsevier

    Google Scholar 

  20. Dagtekin, O., Dethlefs, N.: Imputation of partially observed water quality data using self-attention LSTM. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2022). Publisher: IEEE

    Google Scholar 

  21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). Publisher: MIT Press

    Google Scholar 

  22. Xie, C., Huang, C., Zhang, D., He, W.: BiLSTM-I: a deep learning-based long interval gap-filling method for meteorological observation data. Int. J. Environ. Res. Publ. Health 18(19), 10321 (2021). Publisher: MDPI

    Google Scholar 

  23. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  24. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  25. Shin, Y.G., Sagong, M.C., Yeo, Y.J., Kim, S.W., Ko, S.J.: Pepsi++: fast and lightweight network for image inpainting. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 252–265 (2020). Publisher: IEEE

    Google Scholar 

  26. Peng, J., Liu, D., Xu, S., Li, H.: Generating diverse structure for image inpainting with hierarchical VQ-VAE. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10775–10784 (2021)

    Google Scholar 

  27. Kadow, C., Hall, D.M., Ulbrich, U.: Artificial intelligence reconstructs missing climate information. Nat. Geosci. 13(6), 408–413 (2020). Publisher: Nature Publishing Group UK London

    Google Scholar 

  28. Irrgang, C., Saynisch-Wagner, J., Dill, R., Boergens, E., Thomas, M.: Self-validating deep learning for recovering terrestrial water storage from gravity and altimetry measurements. Geophys. Res. Lette. 47(17), 2020–089258 (2020). Publisher: Wiley Online Library

    Google Scholar 

  29. Dong, J., Yin, R., Sun, X., Li, Q., Yang, Y., Qin, X.: Inpainting of remote sensing SST images with deep convolutional generative adversarial network. IEEE Geosci. Remote Sens. Lett. 16(2), 173–177 (2018). Publisher: IEEE

    Google Scholar 

  30. Yu, J., Wu, B.: Attention and hybrid loss guided deep learning for consecutively missing seismic data reconstruction. IEEE Trans. Geosci. Remote Sens. 60, 1–8 (2021). Publisher: IEEE

    Google Scholar 

  31. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  32. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  33. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30, pp. 5998–6008 (2017)

    Google Scholar 

  34. Chaudhari, S., Mithal, V., Polatkan, G., Ramanath, R.: An attentive survey of attention models. ACM Trans. Intell. Syst. Technol. (TIST) 12(5), 1–32 (2021). Publisher: ACM, New York, NY, USA

    Google Scholar 

  35. Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local implicit image function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8628–8638 (2021)

    Google Scholar 

  36. Karras, T., et al.: Alias-free generative adversarial networks. In: Advances in Neural Information Processing Systems, vol. 34, pp. 852–863 (2021)

    Google Scholar 

  37. Liu, H., et al.: Video super-resolution based on deep learning: a comprehensive survey. Artif. Intell. Rev. 55(8), 5981–6035 (2022). Publisher: Springer

    Google Scholar 

  38. Hays, J., Efros, A.A.: Scene completion using millions of photographs. ACM Tran. Graph. (ToG) 26(3), 4 (2007). Publisher: ACM, New York, NY, USA

    Google Scholar 

  39. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: 2011 International Conference on Computer Vision, pp. 2018–2025 (2011). Publisher: IEEE

    Google Scholar 

  40. Shi, W., et al.: Is the deconvolution layer the same as a convolutional layer? arXiv preprint arXiv:1609.07009 (2016)

  41. Rosenbaltt, F.: The perceptron - a perceiving and recognizing automation. Cornell Aeronautical Laboratory (1957)

    Google Scholar 

  42. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  43. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). Publisher: ACM, New York, NY, USA

    Google Scholar 

  44. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, Atlanta, Georgia, USA, vol. 30, p. 3 (2013)

    Google Scholar 

  45. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

  46. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015). Publisher: PMLR

    Google Scholar 

  47. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). Publisher: IEEE

    Google Scholar 

  48. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  49. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  50. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25

    Chapter  Google Scholar 

  51. Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M.: Methods for imputation of missing values in air quality data sets. Atmos. Environ. 38(18), 2895–2907 (2004). Publisher: Elsevier

    Google Scholar 

Download references

Acknowledgment

This work is funded by the National Natural Science Foundation of China (No. 42265010, No. 62162053, No. 62062059, No. 62166032), Natural Science Foundation of Qinghai Province (No. 2023-ZJ-906M), Youth Scientific Research Foundation of Qinghai University (No. 2022-QGY-6) and the Open Project of State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University (No. 2020-ZZ-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 510 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, T., Wu, L., Zhang, X., Wang, X., Huang, J. (2024). STA-Net: Reconstruct Missing Temperature Data of Meteorological Stations Using a Spatiotemporal Attention Neural Network. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1961. Springer, Singapore. https://doi.org/10.1007/978-981-99-8126-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8126-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8125-0

  • Online ISBN: 978-981-99-8126-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics