Skip to main content

Anti-interference Zeroing Neural Network Model for Time-Varying Tensor Square Root Finding

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Square root finding plays an important role in many scientific and engineering fields, such as optimization, signal processing and state estimation, but existing research mainly focuses on solving the time-invariant matrix square root problem. So far, few researchers have studied the time-varying tensor square root (TVTSR) problem. In this study, a novel anti-interference zeroing neural network (AIZNN) model is proposed to solve TVTSR problem online. With the activation of the advanced power activation function (APAF), the AIZNN model is robust in solving the TVTSR problem in the presence of the vanishing and non-vanishing disturbances. We present detailed theoretical analysis to show that, with the AIZNN model, the trajectory of error will converge to zero within a fixed time, and we also calculate the upper bound of the convergence time. Numerical experiments are presented to further verify the robustness of the proposed AIZNN model. Both the theoretical analysis and numerical experiments show that, the proposed AIZNN model provides a novel and noise-tolerant way to solve the TVTSR problem online.

Supported by Newcastle University seed funding “AI for Synthetic Biology and Brain Health research”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Araújo, J.A.F.: A micromechanical analysis of strain concentration tensor for elastoplastic medium containing aligned and misaligned pores. Mech. Res. Commun. 125, 103989 (2022)

    Article  Google Scholar 

  2. Berahas, A.S., Bollapragada, R., Nocedal, J.: An investigation of Newton-sketch and subsampled Newton methods. Optim. Methods Softw. 35(4), 661–680 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dai, J., Luo, L., Xiao, L., Jia, L., Li, X.: An intelligent fuzzy robustness ZNN model with fixed-time convergence for time-variant Stein matrix equation. Int. J. Intell. Syst. 37(12), 11670–11691 (2022)

    Article  Google Scholar 

  4. Eggersmann, R., Stainier, L., Ortiz, M., Reese, S.: Model-free data-driven computational mechanics enhanced by tensor voting. Comput. Methods Appl. Mech. Eng. 373, 113499 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. El Guide, M., El Ichi, A., Jbilou, K., Beik, F.: Tensor Krylov subspace methods via the Einstein product with applications to image and video processing. Appl. Numer. Math. 181, 347–363 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fu, Z., Zhang, Y., Tan, N.: Gradient-feedback ZNN for unconstrained time-variant convex optimization and robot manipulator application. IEEE Trans. Ind. Inform. (2023)

    Google Scholar 

  7. Haynes, M.S., Fenni, I.: T-matrix backprojection imaging for scalar and vector electromagnetic waves. IEEE Trans. Antennas Propagation (2023)

    Google Scholar 

  8. Jiang, C., Zhang, Y., Mou, C., Li, B., Sun, X., Shi, Y.: A new ZNN model for finding discrete time-variant matrix square root: From model design to parameter analysis. Journal of Computational and Applied Mathematics, p. 115260 (2023)

    Google Scholar 

  9. Jiang, C., Wang, S., Wu, B., Fernandez, C., Xiong, X., Coffie-Ken, J.: A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter. Energy 219, 119603 (2021)

    Article  Google Scholar 

  10. Jin, J., Zhu, J., Gong, J., Chen, W.: Novel activation functions-based ZNN models for fixed-time solving dynamic Sylvester equation. Neural Comput. Appl. 34(17), 14297–14315 (2022)

    Article  Google Scholar 

  11. Jin, J., Zhu, J., Zhao, L., Chen, L.: A fixed-time convergent and noise-tolerant zeroing neural network for online solution of time-varying matrix inversion. Appl. Soft Comput. 130, 109691 (2022)

    Article  Google Scholar 

  12. Kong, Y., Hu, T., Lei, J., Han, R.: A finite-time convergent neural network for solving time-varying linear equations with inequality constraints applied to redundant manipulator. Neural Process. Lett. 54(1), 125–144 (2022)

    Article  Google Scholar 

  13. Liu, Y., Liu, J., Long, Z., Zhu, C.: Tensor computation for data analysis. Springer (2022)

    Google Scholar 

  14. Metzler, J., Coley, C.: Evaluation of knowledge-guided tensor decomposition in engineering applications. In: AIAA SCITECH 2023 Forum, p. 1433 (2023)

    Google Scholar 

  15. Okunishi, K., Nishino, T., Ueda, H.: Developments in the tensor network-from statistical mechanics to quantum entanglement. J. Phys. Soc. Jpn. 91(6), 062001 (2022)

    Article  Google Scholar 

  16. Pang, B., Nijkamp, E., Wu, Y.N.: Deep learning with tensorflow: a review. J. Educ. Behav. Stat. 45(2), 227–248 (2020)

    Article  Google Scholar 

  17. Pleiss, G., Jankowiak, M., Eriksson, D., Damle, A., Gardner, J.: Fast matrix square roots with applications to Gaussian processes and Bayesian optimization. Adv. Neural. Inf. Process. Syst. 33, 22268–22281 (2020)

    Google Scholar 

  18. Rahardja, U., Aini, Q., Manongga, D., Sembiring, I., Girinzio, I.D.: Implementation of tensor flow in air quality monitoring based on artificial intelligence. Int. J. Artif. Intel. Res. 6(1) (2023)

    Google Scholar 

  19. Sheppard, J.Z.: Psychoeducation tensor as a model of cognitive physics. ScienceOpen Posters (2023)

    Google Scholar 

  20. Speranza, E., Weickgenannt, N.: Spin tensor and pseudo-gauges: from nuclear collisions to gravitational physics. Europ. Phys. J. A 57(5), 155 (2021)

    Article  Google Scholar 

  21. Tan, Z.: Fixed-time convergent gradient neural network for solving online Sylvester equation. Mathematics 10(17), 3090 (2022)

    Article  Google Scholar 

  22. Xiao, L.: A finite-time convergent Zhang neural network and its application to real-time matrix square root finding. Neural Comput. Appl. 31, 793–800 (2019)

    Article  Google Scholar 

  23. Xiao, L., Jia, L.: FTZNN for time-varying matrix square root (2023)

    Google Scholar 

  24. Xiao, L., Li, L., Tao, J., Li, W.: A predefined-time and anti-noise varying-parameter ZNN model for solving time-varying complex Stein equations. Neurocomputing (2023)

    Google Scholar 

  25. Xiao, L., Li, X., Jia, L., Liu, S.: Improved finite-time solutions to time-varying Sylvester tensor equation via zeroing neural networks. Appl. Math. Comput. 416, 126760 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, J., Xiao, L., Tan, P., Li, J., Yao, W., Li, J. (2024). Anti-interference Zeroing Neural Network Model for Time-Varying Tensor Square Root Finding. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1961. Springer, Singapore. https://doi.org/10.1007/978-981-99-8126-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8126-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8125-0

  • Online ISBN: 978-981-99-8126-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics