Skip to main content

Leveraging Hierarchical Similarities for Contrastive Clustering

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1962))

Included in the following conference series:

  • 393 Accesses

Abstract

Recently, contrastive clustering has demonstrated high performance in the field of deep clustering due to its powerful feature extraction capabilities. However, existing contrastive clustering methods suffer from inter-class conflicts and often produce suboptimal clustering outcomes due to the disregard of latent class information. To address this issue, we propose a novel method called Contrastive learning using Hierarchical data similarities for Deep Clustering (CHDC), consisting of three modules, namely the inter-class separation enhancer, the intra-class compactness enhancer, and the clustering module. Specifically, to induct the latent class information by utilizing the sample pairs with data similarities, the inter-class separation enhancer and the intra-class compactness enhancer handle negative and positive sample pairs, respectively, with distinct hierarchical similarities. Additionally, the clustering module aims to ensure the alignment of cluster assignments between samples and their neighboring samples. By designing these three modules that work collaboratively, inter-class conflicts are alleviated, allowing CHDC to learn more discriminative features. Lastly, we design a novel update method for positive sample pairs to reduce the likelihood of introducing erroneous information. To evaluate the performance of CHDC, we conduct extensive experiments on five widely adopted image classification datasets. The experimental results demonstrate the superiority of CHDC compared to state-of-the-art methods. Moreover, ablation studies demonstrate the effectiveness of the proposed modules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2, 433–459 (2010)

    Article  Google Scholar 

  2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Proceedings of the Advances in Neural Information Processing System, vol. 19 (2006)

    Google Scholar 

  3. Bi, F., Wang, W., Chen, L.: DSCAN: density-based spatial clustering of applications with noise. J. Nanjing Univ. (Nat. Sci.) 48, 491–498 (2012)

    Google Scholar 

  4. Cai, D., He, X., Wang, X., Bao, H., Han, J.: Locality preserving nonnegative matrix factorization. In: Proceedings of the International Joint Conference on Artificial Intelligence (2009)

    Google Scholar 

  5. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European Conference on Computer Vision, pp. 132–149 (2018)

    Google Scholar 

  6. Chang, J., Guo, Y., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep discriminative clustering analysis (2019)

    Google Scholar 

  7. Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5879–5887 (2017)

    Google Scholar 

  8. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: Proceedings of the International Conference on Machine Learning, pp. 1597–1607 (2020)

    Google Scholar 

  9. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop, pp. 702–703 (2020)

    Google Scholar 

  10. Gowda, K.C., Krishna, G.: Agglomerative clustering using the concept of mutual nearest neighbourhood. Pattern Recogn. 10, 105–112 (1978)

    Article  MATH  Google Scholar 

  11. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1753–1759 (2017)

    Google Scholar 

  12. Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In: Proceedings of International Conference on Neural Information Processing, pp. 373–382 (2017)

    Google Scholar 

  13. Guo, Y., et al.: HCSC: hierarchical contrastive selective coding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9706–9715 (2022)

    Google Scholar 

  14. Haeusser, P., Plapp, J., Golkov, V., Aljalbout, E., Cremers, D.: Associative deep clustering: training a classification network with no labels. In: Proceedings of the German Conference on Pattern Recognition, pp. 18–32 (2019)

    Google Scholar 

  15. Hsu, C.C., Lin, C.W.: CNN-based joint clustering and representation learning with feature drift compensation for large-scale image data. IEEE Trans. Multimedia 20, 421–429 (2017)

    Article  Google Scholar 

  16. Huang, J., Gong, S., Zhu, X.: Deep semantic clustering by partition confidence maximisation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8849–8858 (2020)

    Google Scholar 

  17. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9865–9874 (2019)

    Google Scholar 

  18. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embedding: an unsupervised and generative approach to clustering. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1965–1972 (2017)

    Google Scholar 

  19. Khosla, P., et al.: Supervised contrastive learning. In: Proceedings of the Advances in Neural Information Processing System, vol. 33, pp. 18661–18673 (2020)

    Google Scholar 

  20. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of the International Conference on Learning Representations (2013)

    Google Scholar 

  21. Kiselev, V.Y., Andrews, T.S., Hemberg, M.: Challenges in unsupervised clustering of single-cell RNA-SEQ data. Nat. Rev. Genet. 20, 273–282 (2019)

    Article  Google Scholar 

  22. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Handbook of Systemic Autoimmune Diseases 1 (2009)

    Google Scholar 

  23. Kruskal, J.B., Wish, M.: Multidimensional Scaling, vol. 11. Sage, Thousand Oaks (1978)

    Book  Google Scholar 

  24. Kung, S.Y.: Kernel Methods and Machine Learning. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  25. Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J.T., Peng, X.: Contrastive clustering. In: Proceedings of the Association for the Advancement of Artificial Intelligence, vol. 35, pp. 8547–8555 (2021)

    Google Scholar 

  26. Ma, X., Kim, W.H.: Locally normalized soft contrastive clustering for compact clusters. In: Proceedings of the International Joint Conference on Artificial Intelligence (2022)

    Google Scholar 

  27. McQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  28. Mehralian, M., Karasfi, B.: RDCGAN: unsupervised representation learning with regularized deep convolutional generative adversarial networks. In: Proceedings of the Conference on Artificial Intelligence and Robotics and Asia-Pacific International Symposium, pp. 31–38 (2018)

    Google Scholar 

  29. Meng, Q., Qian, H., Liu, Y., Xu, Y., Shen, Z., Cui, L.: MHCCL: masked hierarchical cluster-wise contrastive learning for multivariate time series. In: Proceedings of the Association for the Advancement of Artificial Intelligence (2022)

    Google Scholar 

  30. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Proceedings of the Advances in Neural Information Processing System, vol. 14 (2001)

    Google Scholar 

  31. Regatti, J.R., Deshmukh, A.A., Manavoglu, E., Dogan, U.: Consensus clustering with unsupervised representation learning. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1–9 (2021)

    Google Scholar 

  32. Ren, Y., et al.: Deep clustering: a comprehensive survey. arXiv preprint arXiv:2210.04142 (2022)

  33. Reynolds, D.A., et al.: Gaussian mixture models. Encycl. Biomet. 741, 659–663 (2009)

    Article  Google Scholar 

  34. Sarfraz, S., Sharma, V., Stiefelhagen, R.: Efficient parameter-free clustering using first neighbor relations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2019)

    Google Scholar 

  35. Saunshi, N., Plevrakis, O., Arora, S., Khodak, M., Khandeparkar, H.: A theoretical analysis of contrastive unsupervised representation learning. In: Proceedings of the International Conference on Machine Learning, vol. 97, pp. 5628–5637 (2019)

    Google Scholar 

  36. Shen, S., et al.: Structure-aware face clustering on a large-scale graph with 107 nodes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9085–9094 (2021)

    Google Scholar 

  37. Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical generative adversarial networks (2015)

    Google Scholar 

  38. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., Van Gool, L.: SCAN: learning to classify images without labels. In: Proceedings of the European Conference on Computer Vision, pp. 268–285 (2020)

    Google Scholar 

  39. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Wang, L., Xiao, Y., Li, J., Feng, X., Li, Q., Yang, J.: IIRWR: internal inclined random walk with restart for lncRNA-disease association prediction. IEEE Access 7, 54034–54041 (2019)

    Article  Google Scholar 

  41. Wu, J., et al.: Deep comprehensive correlation mining for image clustering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8150–8159 (2019)

    Google Scholar 

  42. Xiao, Y., et al.: Reinforcement learning-based non-autoregressive solver for traveling salesman problems. arXiv preprint arXiv:2308.00560 (2023)

  43. Xiao, Y., Xiao, Z., Feng, X., Chen, Z., Kuang, L., Wang, L.: A novel computational model for predicting potential lncRNA-disease associations based on both direct and indirect features of lncRNA-disease pairs. BMC Bioinform. 21, 1–22 (2020)

    Article  Google Scholar 

  44. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: Proceedings of the International Conference on Machine Learning, pp. 478–487 (2016)

    Google Scholar 

  45. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5147–5156 (2016)

    Google Scholar 

  46. Zhong, H., et al.: Graph contrastive clustering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9224–9233 (2021)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2021YFF1201200), the Jilin Provincial Department of Science and Technology Project (20230201083GX, 20220201145GX, and 20230201065GX), the National Natural Science Foundation of China (62072212, 61972174, 61972175, and 12205114), the Guangdong Universities’ Innovation Team Project (2021KCXTD015), and Key Disciplines (2021ZDJS138) Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Xiao, Y., Wu, X., Song, L., Liang, Y., Zhou, Y. (2024). Leveraging Hierarchical Similarities for Contrastive Clustering. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1962. Springer, Singapore. https://doi.org/10.1007/978-981-99-8132-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8132-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8131-1

  • Online ISBN: 978-981-99-8132-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics