Skip to main content

FEDEL: Frequency Enhanced Decomposition and Expansion Learning for Long-Term Time Series Forecasting

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1962))

Included in the following conference series:

  • 342 Accesses

Abstract

Long-term Time Series Forecasting (LTSF) is widely used in various fields, for example, power planning. LTSF requires models to capture subtle long-term dependencies in time series effectively. However, several challenges hinder the predictive performance of existing models, including the inability to exploit the correlation dependencies in time series fully, the difficulty in decoupling the complex cycles of time series in the time domain, and the error accumulation of iterative multi-step prediction. To address these issues, we design a Frequency Enhanced Decomposition and Expansion Learning (FEDEL) model for LTSF. The model has a linear complexity with three distinguishing features: (i) an extensive capacity depth regime that can effectively capture complex dependencies in long-term time series, (ii) decoupling of complex cycles using sparse representations of time series in the frequency domain, (iii) a direct multi-step prediction strategy to generate the prediction series, which can improve the prediction speed and avoid error accumulation. We have conducted extensive experiments on eight real-world large-scale datasets. The experimental results demonstrate that the FEDEL model performs significantly better than traditional methods and outperforms the current SOTA model in the field of LTSF in most cases.

This work was supported by the National Key R &D Program of China under Grant No. 2020YFB1710200 and Heilongjiang Key R & D Program of China under Grant No. GA23A915.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://pems.dot.ca.gov.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.

  3. 3.

    https://www.bgc-jena.mpg.de/wetter/.

References

  1. Ariyo, A.A., Adewumi, A.O., Ayo, C.K.: Stock price prediction using the ARIMA model. In: 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, pp. 106–112. IEEE (2014)

    Google Scholar 

  2. Borovykh, A., Bohte, S., Oosterlee, C.W.: Conditional time series forecasting with convolutional neural networks. stat 1050, 17 (2018)

    Google Scholar 

  3. Box, G.E., Jenkins, G.M., MacGregor, J.F.: Some recent advances in forecasting and control. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 23(2), 158–179 (1974)

    MathSciNet  Google Scholar 

  4. Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: STL: a seasonal-trend decomposition. J. Off. Stat 6(1), 3–73 (1990)

    Google Scholar 

  5. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Holt, C.C.: Forecasting trends and seasonals by exponentially weighted moving averages. ONR Memorandum 52(52), 5–10 (1957)

    Google Scholar 

  8. Kitaev, N., Kaiser, L., Levskaya, A.: Reformer: the efficient transformer. In: International Conference on Learning Representations (2020)

    Google Scholar 

  9. Lai, G., Chang, W.C., Yang, Y., Liu, H.: Modeling long-and short-term temporal patterns with deep neural networks. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 95–104 (2018)

    Google Scholar 

  10. Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  11. Van den Oord, A., et al.: WaveNet: a generative model for raw audio. In: 9th ISCA Speech Synthesis Workshop, pp. 125–125 (2016)

    Google Scholar 

  12. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-beats: neural basis expansion analysis for interpretable time series forecasting. In: International Conference on Learning Representations (2020)

    Google Scholar 

  13. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–1191 (2020)

    Article  Google Scholar 

  14. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  15. Vecchia, A.: Periodic autoregressive-moving average (PARMA) modeling with applications to water resources 1. JAWRA J. Am. Water Resour. Assoc. 21(5), 721–730 (1985)

    Article  Google Scholar 

  16. Whittle, P.: Hypothesis Testing in Time Series Analysis, vol. 4. Almqvist & Wiksells boktr. (1951)

    Google Scholar 

  17. Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural. Inf. Process. Syst. 34, 22419–22430 (2021)

    Google Scholar 

  18. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11106–11115 (2021)

    Google Scholar 

  19. Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., Jin, R.: FEDformer: frequency enhanced decomposed transformer for long-term series forecasting. In: International Conference on Machine Learning, pp. 27268–27286. PMLR (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, R., Cui, W., Zhang, H., Han, Q. (2024). FEDEL: Frequency Enhanced Decomposition and Expansion Learning for Long-Term Time Series Forecasting. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1962. Springer, Singapore. https://doi.org/10.1007/978-981-99-8132-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8132-8_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8131-1

  • Online ISBN: 978-981-99-8132-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics