Skip to main content

On the Use of Persistent Homology to Control the Generalization Capacity of a Neural Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Analyzing neural network (NN) generalization is vital for ensuring effective performance on new, unseen data, beyond the training set. Traditional methods involve evaluating NN across multiple testing datasets, a resource-intensive process involving data acquisition, preprocessing, and labeling. The primary challenge is determining the optimal capacity for training observations, requiring adaptable adjustments based on the task and available data information. This paper leverages Algebraic Topology and relevance measures to investigate NN behavior during learning. We define NN on a topological space as a functional topology graph and compute topological summaries to estimate generalization gaps. Simultaneously, we assess the relevance of NN units, progressively pruning network units. The generalization gap estimation helps identify overfitting, enabling timely early-stopping decisions and identifying the architecture with optimal generalization. This approach offers a comprehensive insight into NN generalization and supports the exploration of NN extensibility and interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballester, R., Clemente, X.A., Casacuberta, C., Madadi, M., Corneanu, C.A., Escalera, S.: Towards explaining the generalization gap in neural networks using topological data analysis (2022). https://doi.org/10.48550/ARXIV.2203.12330, https://arxiv.org/abs/2203.12330

  2. Chazal, F., Michel, B.: An introduction to topological data analysis: fundamental and practical aspects for data scientists (2017). https://doi.org/10.48550/ARXIV.1710.04019, https://arxiv.org/abs/1710.04019

  3. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have l p-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Corneanu, C., Madadi, M., Escalera, S., Martinez, A.: Computing the testing error without a testing set (2020). https://doi.org/10.48550/ARXIV.2005.00450, https://arxiv.org/abs/2005.00450

  5. Deng, W., Zheng, L.: Are labels always necessary for classifier accuracy evaluation? In: Proceedings of the CVPR (2021)

    Google Scholar 

  6. Dua, D., Graff, C.: UCI machine learning repository (2017). https://archive.ics.uci.edu/ml

  7. Hensel, F., Moor, M., Rieck, B.: A survey of topological machine learning methods. Front. Artif. Intell. 4, 681108 (2021). https://doi.org/10.3389/frai.2021.681108

    Article  Google Scholar 

  8. Jiang, Y., et al.: NeurIPS 2020 competition: predicting generalization in deep learning. arXiv preprint arXiv:2012.07976 (2020)

  9. Lassance, C., Béthune, L., Bontonou, M., Hamidouche, M., Gripon, V.: Ranking deep learning generalization using label variation in latent geometry graphs. CoRR abs/2011.12737 (2020), https://arxiv.org/abs/2011.12737

  10. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theor. Probab. Appl. 16(2), 264–280 (1971)

    Article  MATH  Google Scholar 

  11. Watanabe, S., Yamana, H.: Topological measurement of deep neural networks using persistent homology. CoRR abs/2106.03016 (2021), https://arxiv.org/abs/2106.03016

  12. Yacoub, M., Bennani, Y.: HVS: a heuristic for variable selection in multilayer artificial neural network classifier. In: Dagli, C., Akay, M., Ersoy, O., Fernandez, B., Smith, A. (eds.) Intelligent Engineering Systems Through Artificial Neural Networks, vol. 7, pp. 527–532 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abir Barbara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbara, A., Bennani, Y., Karkazan, J. (2024). On the Use of Persistent Homology to Control the Generalization Capacity of a Neural Network. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1962. Springer, Singapore. https://doi.org/10.1007/978-981-99-8132-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8132-8_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8131-1

  • Online ISBN: 978-981-99-8132-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics