Abstract
In this paper, an optimal control algorithm based on concurrent learning and adaptive dynamic programming for event-triggered constrained \(H_\infty \) control is developed. First, the \(H_\infty \) control system under consideration is based on event-triggered constrained input and time-triggered external disturbance, which saves resources and reduces the network bandwidth burden. Second, in the implementation of the control scheme, a critic neural network is designed to approximate unknown value function. Moreover, concurrent learning techniques participate in weight training, making the implementation process simple and effective. Lastly, the stability of the system and the effectiveness of the algorithm are demonstrated through theorem proofs and simulation results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bellman, R.E.: Dynamic programming. Princeton University Press (1957)
Liu, D., Xue, S., Zhao, B., Luo, B., Wei, Q.: Adaptive dynamic programming for control: a survey and recent advances. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 142–160 (2021)
Liu, D., Wei, Q., Wang, D., Yang, X., Li, H.: Adaptive Dynamic Programming with Applications in Optimal Control. AIC, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50815-3
Lewis, F.L., Vrabie, D.: Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst. Mag. 9(3), 32–50 (2009)
Wang D., Li X., Zhao M., Qiao J.: Adaptive critic control design with knowledge transfer for wastewater treatment applications. IEEE Trans. Industrial Inform. https://doi.org/10.1109/TII.2023.3278875
Wang, F.-Y., Zhang, H., Liu, D.: Adaptive dynamic programming: an introduction. IEEE Comput. Intell. Mag. 4(2), 39–47 (2009)
Bertsekas, D.P., Homer, M.L., Logan, D.A., Patek, S.D., Sandell, N.R.: Missile defense and interceptor allocation by neuro-dynamic programming. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 30(1), 42–51 (2000)
Zhang, H., Cui, L., Luo, Y.: Near-optimal control for nonzero-sum differential games of continuous-time nonlinear systems using single network ADP. IEEE Trans. Cybern. 43(1), 206–216 (2013)
Luo, B., Wu, H.-N., Huang, T., Liu, D.: Data-based approximate policy iteration for affine nonlinear continuous-time optimal control design. Automatica 50(12), 3281–3290 (2014)
Jiang, Y., Jiang, Z.-P.: Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica 48(10), 2699–2704 (2012)
Luo, B., Liu, D., Wu, H.-N.: Adaptive constrained optimal control design for data-based nonlinear discrete-time systems with critic-only structure. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2099–2111 (2018)
Liu, D., Wei, Q.: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems. IEEE Trans. Cybern. 43(2), 779–789 (2013)
Wang, D., Liu, D., Wei, Q., Zhao, D., Jin, N.: Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming. Automatica 48(8), 1825–1832 (2012)
An, T., Wang, Y., Liu, G., Li, Y., Dong, B.: Cooperative game-based approximate optimal control of modular robot manipulators for human-robot collaboration. IEEE Trans. Cybern. 53(7), 4691–4703 (2023)
Vamvoudakis, K.G., Mojoodi, A., Ferraz, H.: Event-triggered optimal tracking control of nonlinear systems. Int. J. Robust Nonlinear Control 27(4), 598–619 (2017)
Yang, X., He, H.: Adaptive critic designs for event-triggered robust control of nonlinear systems with unknown dynamics. IEEE Trans. Cybern. 49(6), 2255–2267 (2019)
Zhang, Q., Zhao, D.: Data-based reinforcement learning for non-zero-sum games with unknown drift dynamics. IEEE Trans. Cybern. 49(8), 2874–2885 (2019)
Luo, B., Huang, T., Liu, D.: Periodic event-triggered suboptimal control with sampling period and performance analysis. IEEE Trans. Cybern. 51(3), 1253–1261 (2021)
Yang, Y., Vamvoudakis, K.G., Modares, H., Yin, Y., Wunsch, D.C.: Hamiltonian-driven hybrid adaptive dynamic programming. IEEE Trans. Syst. Man Cybern. Syst. 51(10), 6423–6434 (2021)
Xue, S., Luo, B., Liu, D.: Event-triggered adaptive dynamic programming for zero-sum game of partially unknown continuous-time nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 50(9), 3189–3199 (2020)
Wang, D., Hu, L., Zhao, M., Qiao, J.: Dual event-triggered constrained control through adaptive critic for discrete-time zero-sum games. IEEE Trans. Syst. Man Cybern. Syst. 53(3), 1584–1595 (2023)
Kamalapurkar, R., Klotz, J.R., Dixon, W.E.: Concurrent learning based approximate feedback-nash equilibrium solution of N-player nonzero-sum differential games. IEEE/CAA J. Autom. Sinica 1(3), 239–247 (2014)
Luo, B., Yang, Y., Liu, D.: Adaptive Q-learning for data-based optimal output regulation with experience replay. IEEE Trans. Cybern. 48(12), 3337–3348 (2018)
Zhao, D., Zhang, Q., Wang, D., Zhu, Y.: Experience replay for optimal control of nonzero-sum game systems with unknown dynamics. IEEE Trans. Cybern. 46(3), 854–865 (2016)
Yang, X., Xu, M., Wei, Q.: Approximate dynamic programming for event-driven \(H_{\infty }\) constrained control. IEEE Trans. Syst. Man Cybern. Syst. doi: https://doi.org/10.1109/TSMC.2023.3277737
Beard, R.W., Saridis, G.N., Wen, J.T.: Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica 33(12), 2159–2177 (1997)
Zhao, B., Liu, D.: Event-triggered decentralized tracking control of modular reconfigurable robots through adaptive dynamic programming. IEEE Trans. Industr. Electron. 67(4), 3054–3064 (2020)
Bai, W., Li, T., Long, Y., Chen, C.L.P.: Event-triggered multigradient recursive reinforcement learning tracking control for multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. 34(1), 366–379 (2023)
Liu, J., Wu, Y., Sun, M., Sun, C.: Fixed-time cooperative tracking for delayed disturbed multi-agent systems under dynamic event-triggered control. IEEE/CAA J. Autom. Sinica 9(5), 930–933 (2022)
Acknowledgments
This paper was supported in part by the National Natural Science Foundation of China under Grants 62022094, 62073085, 62373375, and the Zhejiang Lab (No. 2021NB0AB01), in part by Scientific Research Fund of Hainan University under Grant KYQD(ZR)23025.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Xue, S., Luo, B., Liu, D., Guo, D. (2024). Event-Triggered Constrained \(H_\infty \) Control Using Concurrent Learning and ADP. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1962. Springer, Singapore. https://doi.org/10.1007/978-981-99-8132-8_26
Download citation
DOI: https://doi.org/10.1007/978-981-99-8132-8_26
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8131-1
Online ISBN: 978-981-99-8132-8
eBook Packages: Computer ScienceComputer Science (R0)