Skip to main content

Event-Triggered Constrained \(H_\infty \) Control Using Concurrent Learning and ADP

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1962))

Included in the following conference series:

  • 836 Accesses

Abstract

In this paper, an optimal control algorithm based on concurrent learning and adaptive dynamic programming for event-triggered constrained \(H_\infty \) control is developed. First, the \(H_\infty \) control system under consideration is based on event-triggered constrained input and time-triggered external disturbance, which saves resources and reduces the network bandwidth burden. Second, in the implementation of the control scheme, a critic neural network is designed to approximate unknown value function. Moreover, concurrent learning techniques participate in weight training, making the implementation process simple and effective. Lastly, the stability of the system and the effectiveness of the algorithm are demonstrated through theorem proofs and simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellman, R.E.: Dynamic programming. Princeton University Press (1957)

    Google Scholar 

  2. Liu, D., Xue, S., Zhao, B., Luo, B., Wei, Q.: Adaptive dynamic programming for control: a survey and recent advances. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 142–160 (2021)

    Article  Google Scholar 

  3. Liu, D., Wei, Q., Wang, D., Yang, X., Li, H.: Adaptive Dynamic Programming with Applications in Optimal Control. AIC, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50815-3

    Book  MATH  Google Scholar 

  4. Lewis, F.L., Vrabie, D.: Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst. Mag. 9(3), 32–50 (2009)

    Article  Google Scholar 

  5. Wang D., Li X., Zhao M., Qiao J.: Adaptive critic control design with knowledge transfer for wastewater treatment applications. IEEE Trans. Industrial Inform. https://doi.org/10.1109/TII.2023.3278875

  6. Wang, F.-Y., Zhang, H., Liu, D.: Adaptive dynamic programming: an introduction. IEEE Comput. Intell. Mag. 4(2), 39–47 (2009)

    Article  Google Scholar 

  7. Bertsekas, D.P., Homer, M.L., Logan, D.A., Patek, S.D., Sandell, N.R.: Missile defense and interceptor allocation by neuro-dynamic programming. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 30(1), 42–51 (2000)

    Article  Google Scholar 

  8. Zhang, H., Cui, L., Luo, Y.: Near-optimal control for nonzero-sum differential games of continuous-time nonlinear systems using single network ADP. IEEE Trans. Cybern. 43(1), 206–216 (2013)

    Article  Google Scholar 

  9. Luo, B., Wu, H.-N., Huang, T., Liu, D.: Data-based approximate policy iteration for affine nonlinear continuous-time optimal control design. Automatica 50(12), 3281–3290 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, Y., Jiang, Z.-P.: Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica 48(10), 2699–2704 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Luo, B., Liu, D., Wu, H.-N.: Adaptive constrained optimal control design for data-based nonlinear discrete-time systems with critic-only structure. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2099–2111 (2018)

    Article  MathSciNet  Google Scholar 

  12. Liu, D., Wei, Q.: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems. IEEE Trans. Cybern. 43(2), 779–789 (2013)

    Article  Google Scholar 

  13. Wang, D., Liu, D., Wei, Q., Zhao, D., Jin, N.: Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming. Automatica 48(8), 1825–1832 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. An, T., Wang, Y., Liu, G., Li, Y., Dong, B.: Cooperative game-based approximate optimal control of modular robot manipulators for human-robot collaboration. IEEE Trans. Cybern. 53(7), 4691–4703 (2023)

    Article  Google Scholar 

  15. Vamvoudakis, K.G., Mojoodi, A., Ferraz, H.: Event-triggered optimal tracking control of nonlinear systems. Int. J. Robust Nonlinear Control 27(4), 598–619 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, X., He, H.: Adaptive critic designs for event-triggered robust control of nonlinear systems with unknown dynamics. IEEE Trans. Cybern. 49(6), 2255–2267 (2019)

    Article  Google Scholar 

  17. Zhang, Q., Zhao, D.: Data-based reinforcement learning for non-zero-sum games with unknown drift dynamics. IEEE Trans. Cybern. 49(8), 2874–2885 (2019)

    Article  Google Scholar 

  18. Luo, B., Huang, T., Liu, D.: Periodic event-triggered suboptimal control with sampling period and performance analysis. IEEE Trans. Cybern. 51(3), 1253–1261 (2021)

    Article  Google Scholar 

  19. Yang, Y., Vamvoudakis, K.G., Modares, H., Yin, Y., Wunsch, D.C.: Hamiltonian-driven hybrid adaptive dynamic programming. IEEE Trans. Syst. Man Cybern. Syst. 51(10), 6423–6434 (2021)

    Article  Google Scholar 

  20. Xue, S., Luo, B., Liu, D.: Event-triggered adaptive dynamic programming for zero-sum game of partially unknown continuous-time nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 50(9), 3189–3199 (2020)

    Article  Google Scholar 

  21. Wang, D., Hu, L., Zhao, M., Qiao, J.: Dual event-triggered constrained control through adaptive critic for discrete-time zero-sum games. IEEE Trans. Syst. Man Cybern. Syst. 53(3), 1584–1595 (2023)

    Article  Google Scholar 

  22. Kamalapurkar, R., Klotz, J.R., Dixon, W.E.: Concurrent learning based approximate feedback-nash equilibrium solution of N-player nonzero-sum differential games. IEEE/CAA J. Autom. Sinica 1(3), 239–247 (2014)

    Article  Google Scholar 

  23. Luo, B., Yang, Y., Liu, D.: Adaptive Q-learning for data-based optimal output regulation with experience replay. IEEE Trans. Cybern. 48(12), 3337–3348 (2018)

    Article  Google Scholar 

  24. Zhao, D., Zhang, Q., Wang, D., Zhu, Y.: Experience replay for optimal control of nonzero-sum game systems with unknown dynamics. IEEE Trans. Cybern. 46(3), 854–865 (2016)

    Article  Google Scholar 

  25. Yang, X., Xu, M., Wei, Q.: Approximate dynamic programming for event-driven \(H_{\infty }\) constrained control. IEEE Trans. Syst. Man Cybern. Syst. doi: https://doi.org/10.1109/TSMC.2023.3277737

  26. Beard, R.W., Saridis, G.N., Wen, J.T.: Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica 33(12), 2159–2177 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhao, B., Liu, D.: Event-triggered decentralized tracking control of modular reconfigurable robots through adaptive dynamic programming. IEEE Trans. Industr. Electron. 67(4), 3054–3064 (2020)

    Article  Google Scholar 

  28. Bai, W., Li, T., Long, Y., Chen, C.L.P.: Event-triggered multigradient recursive reinforcement learning tracking control for multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. 34(1), 366–379 (2023)

    Article  MathSciNet  Google Scholar 

  29. Liu, J., Wu, Y., Sun, M., Sun, C.: Fixed-time cooperative tracking for delayed disturbed multi-agent systems under dynamic event-triggered control. IEEE/CAA J. Autom. Sinica 9(5), 930–933 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported in part by the National Natural Science Foundation of China under Grants 62022094, 62073085, 62373375, and the Zhejiang Lab (No. 2021NB0AB01), in part by Scientific Research Fund of Hainan University under Grant KYQD(ZR)23025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, S., Luo, B., Liu, D., Guo, D. (2024). Event-Triggered Constrained \(H_\infty \) Control Using Concurrent Learning and ADP. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1962. Springer, Singapore. https://doi.org/10.1007/978-981-99-8132-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8132-8_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8131-1

  • Online ISBN: 978-981-99-8132-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics