Skip to main content

A Neural Network Architecture for Accurate 4D Vehicle Pose Estimation from Monocular Images with Uncertainty Assessment

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

This paper proposes a new neural network architecture for estimating the four degrees of freedom poses of vehicles from monocular images in an uncontrolled environment. The neural network learns how to reconstruct 3D characteristic points of vehicles from image crops and coordinates of 2D keypoints estimated from these images. The 3D and 2D points are used to compute the vehicle pose solving the Perspective-n-Point problem, while the uncertainty is propagated by applying the Unscented Transform. Our network is trained and tested on the ApolloCar3D dataset, and we introduce a novel method to automatically obtain approximate labels for 3D points in this dataset. Our system outperforms state-of-the-art pose estimation methods on the ApolloCar3D dataset, and unlike competitors, it implements a full pipeline of uncertainty propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brazil, G., Liu, X.: M3D-RPN: monocular 3D region proposal network for object detection. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9286–9295 (2019)

    Google Scholar 

  2. Chabot, F., Chaouch, M., Rabarisoa, J., Teuliere, C., Chateau, T.: Deep MANTA: A coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2040–2049 (2017)

    Google Scholar 

  3. Ferraz, L., Binefa, X., Moreno-Noguer, F.: Leveraging feature uncertainty in the PNP problem. In: Proceedings of the British Machine Vision Conference (2014)

    Google Scholar 

  4. Haralick, R.M.: Propagating covariance in computer vision. Int. J. Pattern Recogn. Artif. Intell. 10(5), 561–572 (1996)

    Article  Google Scholar 

  5. Hoque, S., Xu, S., Maiti, A., Wei, Y., Arafat, M.Y.: Deep learning for 6d pose estimation of objects - a case study for autonomous driving. Expert Syst. Appl. 223, 119838 (2023)

    Google Scholar 

  6. Huang, J., Zhu, Z., Guo, F.: The devil is in the details: delving into unbiased data processing for human pose estimation. arXiv:2008.07139 (2020)

  7. Ke, L., Li, S., Sun, Y., Tai, Y.-W., Tang, C.-K.: GSNet: joint vehicle pose and shape reconstruction with geometrical and scene-aware supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 515–532. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_31

    Chapter  Google Scholar 

  8. Kumar, A., Marks, T.K., Mou, W., Feng, C., Liu, X.: UGLLI face alignment: Estimating uncertainty with gaussian log-likelihood loss. In: IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 778–782 (2019)

    Google Scholar 

  9. Kundu, A., Li, Y., Rehg, J.M.: 3D-RCNN: instance-level 3D object reconstruction via render-and-compare. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3559–3568 (2018)

    Google Scholar 

  10. Lee, H.J., Kim, H., Choi, S.M., Jeong, S.G., Koh, Y.J.: BAAM: monocular 3d pose and shape reconstruction with bi-contextual attention module and attention-guided modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9011–9020, June 2023

    Google Scholar 

  11. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PnP problem. Int. J. Comput. Vision 81, 155–166 (2009)

    Article  Google Scholar 

  12. Li, B., Zhang, T., Xia, T.: Vehicle detection from 3d lidar using fully convolutional network. In: Hsu, D., Amato, N.M., Berman, S., Jacobs, S.A. (eds.) Robotics: Science and Systems XII. University of Michigan, Ann Arbor (2016)

    Google Scholar 

  13. Li, H., et al.: Pose-oriented transformer with uncertainty-guided refinement for 2d-to-3d human pose estimation (2023)

    Google Scholar 

  14. Li, P., Chen, X., Shen, S.: Stereo R-CNN based 3D object detection for autonomous driving. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7636–7644 (2019)

    Google Scholar 

  15. Li, P., Zhao, H., Liu, P., Cao, F.: RTM3D: Real-time monocular 3d detection from object keypoints for autonomous driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 644–660. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_38

    Chapter  Google Scholar 

  16. Liu, F., Hu, Y., Salzmann, M.: Linear-covariance loss for end-to-end learning of 6d pose estimation. CoRR abs/2303.11516 (2023)

    Google Scholar 

  17. LÃşpez, J.G., Agudo, A., Moreno-Noguer, F.: Vehicle pose estimation via regression of semantic points of interest. In: 11th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 209–214 (2019)

    Google Scholar 

  18. Marti, E., de Miguel, M.A., Garcia, F., Perez, J.: A review of sensor technologies for perception in automated driving. IEEE Intell. Transp. Syst. Mag. 11(4), 94–108 (2019)

    Article  Google Scholar 

  19. Möller, T., Trumbore, B.: Fast, minimum storage ray-triangle intersection. J. Graph. Tools 2(1), 21–28 (1997)

    Article  Google Scholar 

  20. Mousavian, A., Anguelov, D., Flynn, J., Kosecka, J.: 3d bounding box estimation using deep learning and geometry. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR. pp. 5632–5640 (2017)

    Google Scholar 

  21. Nowak, T., Skrzypczyński, P.: Geometry-aware keypoint network: accurate prediction of point features in challenging scenario. In: 17th Conference on Computer Science and Intelligence Systems (FedCSIS), pp. 191–200 (2022)

    Google Scholar 

  22. PÃl’rez, D.A., Gietler, H., Zangl, H.: Automatic uncertainty propagation based on the unscented transform. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6 (2020)

    Google Scholar 

  23. Reddy, N.D., Vo, M., Narasimhan, S.G.: Occlusion-Net: 2D/3D occluded keypoint localization using graph networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7318–7327 (2019)

    Google Scholar 

  24. Shi, J., Yang, H., Carlone, L.: Optimal pose and shape estimation for category-level 3d object perception. arXiv:2104.08383 (2021)

  25. Song, X., et al.: ApolloCar3D: a large 3D car instance understanding benchmark for autonomous driving. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5447–5457 (2019)

    Google Scholar 

  26. Toshpulatov, M., Lee, W., Lee, S., Haghighian Roudsari, A.: Human pose, hand and mesh estimation using deep learning: a survey. J. Supercomput. 78(6), 7616–7654 (2022)

    Article  Google Scholar 

  27. Vakhitov, A., Colomina, L.F., Agudo, A., Moreno-Noguer, F.: Uncertainty-aware camera pose estimation from points and lines. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4657–4666 (2021)

    Google Scholar 

  28. Virtanen, P., et al.: SciPy 1.0 contributors: SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

    Article  Google Scholar 

  29. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3349–3364 (2021)

    Article  Google Scholar 

  30. Wang, Q., Chen, J., Deng, J., Zhang, X.: 3D-CenterNet: 3D object detection network for point clouds with center estimation priority. Pattern Recogn. 115, 107884 (2021)

    Article  Google Scholar 

  31. Xu, B., Chen, Z.: Multi-level fusion based 3D object detection from monocular images. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2345–2353 (2018)

    Google Scholar 

  32. Yang, B., Luo, W., Urtasun, R.: PIXOR: real-time 3D object detection from point clouds. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7652–7660 (2018)

    Google Scholar 

  33. Yang, H., Pavone, M.: Object pose estimation with statistical guarantees: conformal keypoint detection and geometric uncertainty propagation. CoRR abs/2303.12246 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Nowak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nowak, T., Skrzypczyński, P. (2024). A Neural Network Architecture for Accurate 4D Vehicle Pose Estimation from Monocular Images with Uncertainty Assessment. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1962. Springer, Singapore. https://doi.org/10.1007/978-981-99-8132-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8132-8_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8131-1

  • Online ISBN: 978-981-99-8132-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics