Skip to main content

Chinese Medical Intent Recognition Based on Multi-feature Fusion

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1962))

Included in the following conference series:

  • 347 Accesses

Abstract

The increasing popularity of online query services has heightened the need for suitable methods to accurately understand the truth of query intention. Currently, most of the medical query intention recognition methods are deep learning-based. Because of the inadequate of corpus of the medical field in the pre-trained phase, these methods may fail to accurately extract the text feature constructed by medical domain knowledge. What’s more, they rely on a single technology to extract the text information, and can’t fully capture the query intention. To mitigate these issues, in this paper, we propose a novel intent recognition model called EDCGA (ERNIE-Health+D-CNN+Bi-GRU+Attention). EDCGA achieves text representation using the word vectors of the pre-trained ERNIE-Health model and employs D-CNN to expand the receptive field for extracting local information features. Meanwhile, it combines Bi-GRU and attention mechanism to extract global information to enhance the understanding of the intent. Extensive experimental results on multiple datasets demonstrate that our proposed model exhibits superior recognition performance compared to the baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://challenge.xfyun.cn/topic/info?type=medical-search &option=stsj.

  2. 2.

    https://github.com/fxsjy/jieba.

References

  1. Chen, N., Su, X., Liu, T., Hao, Q., Wei, M.: A benchmark dataset and case study for chinese medical question intent classification. BMC Med. Inform. Decis. Mak. 20(3), 1–7 (2020)

    Google Scholar 

  2. Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Conference on Empirical Methods in Natural Language Processing, pp. 1724–1734 (2014)

    Google Scholar 

  3. Gabbasov, R., Paringer, R.: Influence of the receptive field size on accuracy and performance of a convolutional neural network. In: 2020 International Conference on Information Technology and Nanotechnology (ITNT), pp. 1–4. IEEE (2020)

    Google Scholar 

  4. He, C., Chen, S., Huang, S., Zhang, J., Song, X.: Using convolutional neural network with bert for intent determination. In: 2019 International Conference on Asian Language Processing (IALP), pp. 65–70 (2019)

    Google Scholar 

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  6. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  7. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics, Doha (2014)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (2015)

    Google Scholar 

  9. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  10. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: Espnet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 552–568 (2018)

    Google Scholar 

  11. Park, K., Jee, H., Lee, T., Jung, S., Lim, H.: Automatic extraction of user’s search intention from web search logs. Multimedia Tools Appl. 61(1), 145–162 (2012)

    Article  Google Scholar 

  12. Strubell, E., Verga, P., Belanger, D., McCallum, A.: Fast and accurate entity recognition with iterated dilated convolutions. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2670–2680 (2017)

    Google Scholar 

  13. Sun, Y., et al.: Ernie 3.0: large-scale knowledge enhanced pre-training for language understanding and generation. arXiv preprint arXiv:2107.02137 (2021)

  14. Wang, J., Wang, Z., Zhang, D., Yan, J.: Combining knowledge with deep convolutional neural networks for short text classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 2915–2921 (2017)

    Google Scholar 

  15. Wang, Q., et al.: Building Chinese biomedical language models via multi-level text discrimination. arXiv preprint arXiv:2110.07244 (2021)

  16. Wang, Y., Wang, G., Chen, C., Pan, Z.: Multi-scale dilated convolution of convolutional neural network for image denoising. Multimedia Tools Appl. 78, 19945–19960 (2019)

    Article  Google Scholar 

  17. Wang, Y., Wang, S., Li, Y., Dou, D.: Recognizing medical search query intent by few-shot learning. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 502–512 (2022)

    Google Scholar 

  18. Wang, Y., Wang, S., Yao, Q., Dou, D.: Hierarchical heterogeneous graph representation learning for short text classification. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3091–3101 (2021)

    Google Scholar 

  19. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. 53(3), 1–34 (2020)

    Article  Google Scholar 

  20. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  21. Yu, Z., Hu, K.: Study on medical information classification of BERT-ATT-BILSTM model. IEEE J. Comput. Age 3(6), 1–4 (2020)

    Google Scholar 

  22. Zhang, N., et al.: CBLUE: a Chinese biomedical language understanding evaluation benchmark. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7888–7915 (2022)

    Google Scholar 

  23. Zhang, N., Jia, Q., Yin, K., Dong, L., Gao, F., Hua, N.: Conceptualized representation learning for Chinese biomedical text mining. arXiv preprint arXiv:2008.10813 (2020)

Download references

Acknowledgements

This research is jointly supported by the Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No. 2023MS06023) and the Self-project Program of Engineering Research Center of Ecological Big Data, Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Zhang, T., Yan, R. (2024). Chinese Medical Intent Recognition Based on Multi-feature Fusion. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1962. Springer, Singapore. https://doi.org/10.1007/978-981-99-8132-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8132-8_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8131-1

  • Online ISBN: 978-981-99-8132-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics