Skip to main content

Improving SLDS Performance Using Explicit Duration Variables with Infinite Support

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Switching Linear Dynamical Systems (SLDS) are probabilistic graphical models used both for self-supervised segmentation and dimensionality reduction. Despite their modeling capabilities, SLDS are particularly hard to train. They oftentimes over-segment the timeseries or completely ignore some of the states, reducing the usefulness of the acquired segmentation.

To improve the segmentation in Switching Linear Dynamical Systems, we introduce explicit-duration variables with infinite support. We extend the Beam Sampling algorithm to perform the efficient inference allowing for a duration distribution with infinite support. We conduct experiments on three benchmarks (two already prevalent in the state-space model literature and one demonstrating behavior in a sparse setting) that test the correctness and efficiency of our solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We used implementation of RSLDS and SLDS provided by Linderman et al. https://github.com/lindermanlab/ssm.

References

  1. Ansari, A.F., et al.: Deep explicit duration switching models for time series. In: NeurIPS, pp. 29949–29961 (2021)

    Google Scholar 

  2. Chiappa, S.: Explicit-Duration Markov switching models. Found. Trends ® Mach. Learn. 7(6), 803–886 (2014)

    Google Scholar 

  3. Chiappa, S., Peters, J.: Movement extraction by detecting dynamics switches and repetitions. In: NeurIPS, vol. 23. Curran Associates, Inc. (2010)

    Google Scholar 

  4. Dewar, M., Wiggins, C., Wood, F.: Inference in hidden Markov models with explicit state duration distributions. IEEE Signal Process. Lett. 19(4), 235–238 (2012)

    Article  Google Scholar 

  5. Dong, Z., Seybold, B., Murphy, K., Bui, H.: Collapsed amortized variational inference for switching nonlinear dynamical systems. In: ICML, pp. 2638–2647 (2020)

    Google Scholar 

  6. Fox, E., Sudderth, E.B., Jordan, M.I., Willsky, A.S.: Bayesian nonparametric inference of switching dynamic linear models. IEEE Trans. Signal Process. 59(4), 1569–1585 (2011)

    Article  Google Scholar 

  7. Johnson, M.J., Duvenaud, D.K., Wiltschko, A., Adams, R.P., Datta, S.R.: Composing graphical models with neural networks for structured representations and fast inference. In: NIPS (2016)

    Google Scholar 

  8. Johnson, M.J., Willsky, A.S.: Bayesian nonparametric hidden semi-Markov models. J. Mach. Learn. Res. 14(1), 673–701 (2013)

    MathSciNet  Google Scholar 

  9. Kim, C.J.: Dynamic linear models with Markov-switching. J. Econ. 60(1), 1–22 (1994)

    MathSciNet  Google Scholar 

  10. Linderman, S., Johnson, M., Miller, A., Adams, R., Blei, D., Paninski, L.: Bayesian learning and inference in recurrent switching linear dynamical systems. In: AISTATS, pp. 914–922 (2017)

    Google Scholar 

  11. Murphy, K.: Switching Kalman Filters (1998)

    Google Scholar 

  12. Nassar, J., Linderman, S.W., Bugallo, M.F., Park, I.M.: Tree-structured recurrent switching linear dynamical systems for multi-scale modeling. In: ICLR (2019)

    Google Scholar 

  13. Neal, R.M.: Slice sampling. Ann. Stat. 31(3), 705–767 (2003)

    Article  MathSciNet  Google Scholar 

  14. Oh, S., Rehg, J., Balch, T., Dellaert, F.: Learning and inferring motion patterns using parametric segmental switching linear dynamic systems. Int. J. Comput. Vis. 77 (2008)

    Google Scholar 

  15. Van Gael, J., Saatci, Y., Teh, Y.W., Ghahramani, Z.: Beam sampling for the infinite hidden Markov model. In: ICML, pp. 1088–1095 (2008)

    Google Scholar 

  16. Wang, Y., Blei, D., Cunningham, J.P.: Posterior collapse and latent variable non-identifiability. In: NeurIPS, pp. 5443–5455 (2021)

    Google Scholar 

  17. Yu, S.Z.: Hidden Semi-Markov Models: Theory, Algorithms and Applications. Computer Science Reviews and Trends. Elsevier, Amsterdam; Boston (2016)

    Book  Google Scholar 

  18. Zoltowski, D., Pillow, J., Linderman, S.: A general recurrent state space framework for modeling neural dynamics during decision-making. In: ICML, pp. 11680–11691 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Polish National Science Centre (NCN) under grant OPUS-18 no. 2019/35/B/ST6/04379.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikołaj Słupiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Słupiński, M., Lipiński, P. (2024). Improving SLDS Performance Using Explicit Duration Variables with Infinite Support. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1963. Springer, Singapore. https://doi.org/10.1007/978-981-99-8138-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8138-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8137-3

  • Online ISBN: 978-981-99-8138-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics