Skip to main content

Topological Dynamics of Functional Neural Network Graphs During Reinforcement Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

This study investigates the topological structures of neural network activation graphs, with a focus on detecting higher-order Betti numbers during reinforcement learning. The paper presents visualisations of the neurotopological dynamics of reinforcement learning agents both during and after training, which are useful for different dynamics analyses which we explore in this work. Two applications are considered: frame-by-frame analysis of agent neurotopology and tracking per-neuron presence in cavity boundaries over training steps. The experimental analysis suggests that higher-order Betti numbers found in a neural network’s functional graph can be associated with learning more complex behaviours.

This research was partially supported by the Australian Government through the ARC’s Discovery Projects funding scheme (project DP210103304). The first author was supported by a PhD scholarship from the University of Newcastle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birdal, T., Lou, A., Guibas, L.J., Simsekli, U.: Intrinsic dimension, persistent homology and generalization in neural networks. Adv. Neural. Inf. Process. Syst. 34, 6776–6789 (2021)

    Google Scholar 

  2. Botnan, M.B., Hirsch, C.: On the consistency and asymptotic normality of multiparameter persistent betti numbers. J. Appl. Comput. Topol. 1–38 (2022). https://doi.org/10.1007/s41468-022-00110-9

  3. Brockman, G., et al.: Openai gym. CoRR abs/1606.01540 (2016)

    Google Scholar 

  4. Cavanna, N.J., Jahanseir, M., Sheehy, D.R.: A geometric perspective on sparse filtrations. arXiv:1506.03797 (2015)

  5. Chen, C., Ni, X., Bai, Q., Wang, Y.: A topological regularizer for classifiers via persistent homology. In: Chaudhuri, K., Sugiyama, M. (eds.) Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 89, pp. 2573–2582. PMLR (4 2019)

    Google Scholar 

  6. Corneanu, C., Madadi, M., Escalera, S., Martinez, A.: Explainable early stopping for action unit recognition. In: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 693–699 (2020). https://doi.org/10.1109/FG47880.2020.00080

  7. Corneanu, C.A., Escalera, S., Martinez, A.M.: Computing the testing error without a testing set. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2674–2682 (2020). https://doi.org/10.1109/CVPR42600.2020.00275

  8. Corneanu, C.A., Madadi, M., Escalera, S., Martinez, A.M.: What does it mean to learn in deep networks? and, how does one detect adversarial attacks? In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4752–4761 (2019). https://doi.org/10.1109/CVPR.2019.00489

  9. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Applied Mathematics (2010)

    Google Scholar 

  10. Edelsbrunner, H., Parsa, S.: On the computational complexity of betti numbers: reductions from matrix rank. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 152–160. SIAM (2014)

    Google Scholar 

  11. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2019)

    Google Scholar 

  12. Gebhart, T., Schrater, P.: Adversary detection in neural networks via persistent homology. arXiv:1711.10056 (2017)

  13. Geirhos, R., et al.: Shortcut learning in deep neural networks. Nature Mach. Intell. 2(11), 665–673 (2020). https://doi.org/10.1038/s42256-020-00257-z

    Article  Google Scholar 

  14. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory, pp. 75–263. Springer New York, New York, NY (1987). https://doi.org/10.1007/978-1-4613-9586-7_3

  15. Gutiérrez-Fandiño, A., Fernández, D.P., Armengol-Estapé, J., Villegas, M.: Persistent homology captures the generalization of neural networks without A validation set. arXiv:2106.00012 (2021)

  16. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  17. Hatcher, A.: Algebraic Topology. Cambridge University Press, Algebraic Topology (2002)

    Google Scholar 

  18. Hensel, F., Moor, M., Rieck, B.: A survey of topological machine learning methods. Front. Artif. Intell. 4 (2021). https://doi.org/10.3389/frai.2021.681108

  19. Hofer, C., Graf, F., Niethammer, M., Kwitt, R.: Topologically densified distributions. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 4304–4313. PMLR (7 2020)

    Google Scholar 

  20. Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological signatures. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1633–1643. NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)

    Google Scholar 

  21. Lütgehetmann, D., Govc, D., Smith, J.P., Levi, R.: Computing persistent homology of directed flag complexes. Algorithms 13(1) (2020). https://doi.org/10.3390/a13010019

  22. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, pp. 8024–8035 (2019)

    Google Scholar 

  23. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res. 22(268), 1–8 (2021)

    Google Scholar 

  24. Reimann, M.W., et al.: Cliques of neurons bound into cavities provide a missing link between structure and function. Frontiers in Computational Neuroscience 11 (2017). https://doi.org/10.3389/fncom.2017.00048

  25. Rote, G., Vegter, G.: Computational topology: an introduction. In: Effective Computational Geometry for Curves and Surfaces, pp. 277–312. Springer Heidelberg (2006). https://doi.org/10.1007/978-3-540-33259-6_7

  26. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. A Bradford Book, Cambridge, MA, USA (2018). https://doi.org/10.5555/3312046

  27. Todorov, E., Erez, T., Tassa, Y.: Mujoco: A physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE (2012). https://doi.org/10.1109/IROS.2012.6386109

  28. Tralie, C., Saul, N., Bar-On, R.: Ripser.py: A lean persistent homology library for python. J. Open Source Softw. 3(29), 925 (9 2018). https://doi.org/10.21105/joss.00925

  29. Vietoris, L.: Über den höheren zusammenhang kompakter räume und eine klasse von zusammenhangstreuen abbildungen. Math. Ann. 97(1), 454–472 (1927)

    Article  MathSciNet  Google Scholar 

  30. Watanabe, S., Yamana, H.: Topological measurement of deep neural networks using persistent homology. Ann. Math. Artif. Intell. 90(1), 75–92 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Muller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muller, M., Kroon, S., Chalup, S. (2024). Topological Dynamics of Functional Neural Network Graphs During Reinforcement Learning. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1963. Springer, Singapore. https://doi.org/10.1007/978-981-99-8138-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8138-0_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8137-3

  • Online ISBN: 978-981-99-8138-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics