Skip to main content

How Do Native and Non-native Listeners Differ? Investigation with Dominant Frequency Bands in Auditory Evoked Potential

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

EEG signal provides valuable insights into cortical responses to specific exogenous stimuli, including auditory and visual stimuli. This study investigates the evoked potential in EEG signals and dominant frequency bands for native and non-native subjects. Songs in different languages are played to subjects using conventional in-ear phones or bone-conducting devices. Time-frequency analysis is performed to characterise induced and evoked responses in the EEG signal, focusing on the phase synchronisation level of the evoked potential as a significant feature. Phase locking value (PLV) and weighted phase lag index (WPLI) are used to assess the phase synchrony between the EEG signal and sound signal, while the frequency-dependent effective gain is analysed to understand its impact. The results demonstrate that native subjects experience higher levels of evoked potential, indicating more complex cognitive neural processes compared to non-native subjects. Dominant frequency windows associated with higher levels of evoked potential are identified using a peak-picking algorithm. Interestingly, the choice of playing device has minimal influence on the evoked potential, suggesting similar outcomes with both in-ear phones and bone-conducting devices. This study provides valuable insights into the neural processing differences between native and non-native subjects and highlights the potential impact of playing devices on the evoked potential.

Y. Zhou and M. R. Hasan—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alain, C., Roye, A., Arnott, S.R.: Chapter 9 - middle- and long-latency auditory evoked potentials: what are they telling us on central auditory disorders? In: Celesia, G.G. (ed.) Disorders of Peripheral and Central Auditory Processing, Handbook of Clinical Neurophysiology, vol. 10, pp. 177–199. Elsevier (2013). https://doi.org/10.1016/B978-0-7020-5310-8.00009-0

  2. Alzahab, N.A., et al.: Auditory evoked potential EEG-biometric dataset (2021). https://doi.org/10.13026/ps31-fc50. version 1.0.0

  3. Aydore, S., Pantazis, D., Leahy, R.M.: A note on the phase locking value and its properties. Neuroimage 74, 231–244 (2013). https://doi.org/10.1016/j.neuroimage.2013.02.008

    Article  Google Scholar 

  4. Cohen, M.X.: Analyzing Neural Time Series Data: Theory and Practice. MIT Press, Cambridge (2014)

    Book  Google Scholar 

  5. Dehaene-Lambertz, G.: Electrophysiological correlates of categorical phoneme perception in adults. NeuroReport 8(4), 919–924 (1997). https://doi.org/10.1097/00001756-199703030-00021

    Article  Google Scholar 

  6. Galambos, R.: A comparison of certain gamma band (40-hz) brain rhythms in cat and man. In: Başar, E., Bullock, T.H. (eds.) Induced Rhythms in the Brain, pp. 201–216. Birkhäuser Boston, Boston (1992). https://doi.org/10.1007/978-1-4757-1281-0_11

  7. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). https://doi.org/10.1161/01.CIR.101.23.e215

    Article  Google Scholar 

  8. Hasan, M.R., Hasan, M.M., Hossain, M.Z.: Effect of vocal tract dynamics on neural network-based speech recognition: a Bengali language-based study. Expert. Syst. 39(9), e13045 (2022). https://doi.org/10.1111/exsy.13045

    Article  Google Scholar 

  9. Ibrahim, I.A., Ting, H.N., Moghavvemi, M.: The effects of audio stimuli on auditory-evoked potential in normal hearing Malay adults. Int. J. Health Sci. 12(5), 25 (2018)

    Google Scholar 

  10. Imperatori, L.S., et al.: EEG functional connectivity metrics wPLI and wSMI account for distinct types of brain functional interactions. Sci. Rep. 9(1), 8894 (2019). https://doi.org/10.1038/s41598-019-45289-7

    Article  Google Scholar 

  11. Jagiello, R., Pomper, U., Yoneya, M., Zhao, S., Chait, M.: Rapid brain responses to familiar vs. unfamiliar music-an EEG and pupillometry study. Sci. Rep. 9(1), 15570 (2019). https://doi.org/10.1038/s41598-019-51759-9

  12. Lachaux, J., Rodriguez, E., Martinerie, J., Varela, F.J.: Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8(4), 194–208 (1999). https://doi.org/10.1002/(SICI)1097-0193(1999)8:4$<$194::AID-HBM4$>$3.0.CO;2-C

  13. Michalopoulos, K., Iordanidou, V., Giannakakis, G.A., Nikita, K.S., Zervakis, M.: Characterization of evoked and induced activity in EEG and assessment of intertrial variability. In: 2011 10th International Workshop on Biomedical Engineering, pp. 1–4. IEEE (2011). https://doi.org/10.1109/IWBE.2011.6079037

  14. Morales, S., Bowers, M.E.: Time-frequency analysis methods and their application in developmental EEG data. Dev. Cogn. Neurosci. 54, 101067 (2022). https://doi.org/10.1016/j.dcn.2022.101067

    Article  Google Scholar 

  15. Rahman, J.S., Gedeon, T., Caldwell, S., Jones, R., Hossain, M.Z., Zhu, X.: Melodious micro-frissons: detecting music genres from skin response. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019). https://doi.org/10.1109/IJCNN.2019.8852318

  16. Tallon-Baudry, C., Bertrand, O.: Oscillatory gamma activity in humans and its role in object representation. Trends Cogn. Sci. 3(4), 151–162 (1999). https://doi.org/10.1016/S1364-6613(99)01299-1

    Article  Google Scholar 

  17. Vialatte, F.B., Dauwels, J., Musha, T., Cichocki, A.: Audio representations of multi-channel EEG: a new tool for diagnosis of brain disorders. Am. J. Neurodegener. Dis. 1(3), 292–304 (2012)

    Google Scholar 

  18. Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., Pennartz, C.M.: An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55(4), 1548–1565 (2011). https://doi.org/10.1016/j.neuroimage.2011.01.055

    Article  Google Scholar 

  19. Wagner, M., Ortiz-Mantilla, S., Rusiniak, M., Benasich, A.A., Shafer, V.L., Steinschneider, M.: Acoustic-level and language-specific processing of native and non-native phonological sequence onsets in the low gamma and theta-frequency bands. Sci. Rep. 12(1), 314 (2022). https://doi.org/10.1038/s41598-021-03611-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Zakir Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Hasan, M.R., Hasan, M.M., Zia, A., Hossain, M.Z. (2024). How Do Native and Non-native Listeners Differ? Investigation with Dominant Frequency Bands in Auditory Evoked Potential. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1963. Springer, Singapore. https://doi.org/10.1007/978-981-99-8138-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8138-0_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8137-3

  • Online ISBN: 978-981-99-8138-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics