Skip to main content

MVCAL: Multi View Clustering for Active Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Various active learning methods with ingenious sampling strategies have been proposed to solve the lack of labeled samples in supervised learning, but most are designed for specific tasks. In this paper, we propose a simple but task-agnostic active sampling method. We introduce ‘multi-view clustering module’ to extract multiple feature maps at different levels for unsupervised clustering. According to clustering distribution, we calculate consistency, representativeness and stability to guide sampling and training. Among them, consistency measures the similarity between clustering results of two views, representativeness reflects the distance between a sample and the corresponding cluster center, and stability reflects the model’s feature representation and recognition ability for the same sample. Our method does not depend on the specific network, and can be constructed as a two-stage sampling module to supplement the existing sampling algorithm. Experiments results on image classification and object detection tasks show that our method can further enhance the effect of active learning on the basis of baseline methods.

This work is funded by the Natural Science Foundation of China under Grant No. 62176119.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bachman, P., Sordoni, A., Trischler, A.: Learning algorithms for active learning. In: International Conference on Machine Learning, pp. 301–310. PMLR (2017)

    Google Scholar 

  2. Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M.: The power of ensembles for active learning in image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9368–9377 (2018)

    Google Scholar 

  3. Chen, D., Li, X., Li, S.: A novel convolutional neural network model based on beetle antennae search optimization algorithm for computerized tomography diagnosis. IEEE Trans. Neural Netw. Learn. Syst. 34, 1418–1429 (2021)

    Article  Google Scholar 

  4. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: International Conference on Machine Learning, pp. 1183–1192. PMLR (2017)

    Google Scholar 

  5. Guo, C., Zhao, B., Bai, Y.: DeepCore: a comprehensive library for coreset selection in deep learning. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) Database and Expert Systems Applications, DEXA 2022, Part I. Lecture Notes in Computer Science, vol. 13426, pp. 181–195. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-12423-5_14

  6. Hasan, M., Roy-Chowdhury, A.K.: Context aware active learning of activity recognition models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4543–4551 (2015)

    Google Scholar 

  7. He, T., Jin, X., Ding, G., Yi, L., Yan, C.: Towards better uncertainty sampling: active learning with multiple views for deep convolutional neural network. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 1360–1365. IEEE (2019)

    Google Scholar 

  8. Ji, W., et al.: Are binary annotations sufficient? Video moment retrieval via hierarchical uncertainty-based active learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23013–23022 (2023)

    Google Scholar 

  9. Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2372–2379. IEEE (2009)

    Google Scholar 

  10. Kang, C.J., Peter, W.C.H., Siang, T.P., Jian, T.T., Zhaofeng, L., Yu-Hsing, W.: An active learning framework featured Monte Carlo dropout strategy for deep learning-based semantic segmentation of concrete cracks from images. Struct. Health Monit. 22, 3320–3337 (2023). https://doi.org/10.1177/14759217221150376

    Article  Google Scholar 

  11. Kao, C.-C., Lee, T.-Y., Sen, P., Liu, M.-Y.: Localization-aware active learning for object detection. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11366, pp. 506–522. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20876-9_32

    Chapter  Google Scholar 

  12. Kondratenko, Y., Kozlov, O., Gerasin, O.: Neuroevolutionary approach to control of complex multicoordinate interrelated plants. Int. J. Comput. 18(4), 502–514 (2019)

    Article  Google Scholar 

  13. Kosugi, S., Yamasaki, T.: Crowd-powered photo enhancement featuring an active learning based local filter. IEEE Trans. Circ. Syst. Video Technol. 33, 3145–3158 (2023)

    Article  Google Scholar 

  14. Lewis, D.D.: A sequential algorithm for training text classifiers: corrigendum and additional data. ACM SIGIR Forum 29, 13–19 (1995)

    Article  Google Scholar 

  15. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  16. Luo, W., Schwing, A., Urtasun, R.: Latent structured active learning. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  17. Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 79 (2004)

    Google Scholar 

  18. Nielsen, M.A.: Neural Networks and Deep Learning, vol. 25. Determination Press, San Francisco (2015)

    Google Scholar 

  19. Ponce, H., Moya-Albor, E., Brieva, J.: Towards the distributed wound treatment optimization method for training CNN models: analysis on the MNIST dataset. In: 2023 IEEE 15th International Symposium on Autonomous Decentralized System (ISADS), pp. 1–6. IEEE (2023)

    Google Scholar 

  20. Roy, N., McCallum, A.: Toward optimal active learning through Monte Carlo estimation of error reduction. In: ICML, Williamstown, vol. 2, pp. 441–448 (2001)

    Google Scholar 

  21. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval, vol. 39. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  22. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: International Conference on Learning Representations (2018)

    Google Scholar 

  23. Sivaraman, G., Jackson, N.E.: Coarse-grained density functional theory predictions via deep kernel learning. J. Chem. Theor. Comput. 18(2), 1129–1141 (2022)

    Article  Google Scholar 

  24. Sivaraman, S., Trivedi, M.M.: Active learning for on-road vehicle detection: a comparative study. Mach. Vis. Appl. 25, 599–611 (2014)

    Article  Google Scholar 

  25. Ureel, Y., et al.: Active learning-based exploration of the catalytic pyrolysis of plastic waste. Fuel 328, 125340 (2022)

    Article  Google Scholar 

  26. Vijayanarasimhan, S., Grauman, K.: Large-scale live active learning: training object detectors with crawled data and crowds. Int. J. Comput. Vis. 108, 97–114 (2014)

    Article  MathSciNet  Google Scholar 

  27. Wang, H., Gao, X., Zhang, K., Li, J.: Single-image super-resolution using active-sampling gaussian process regression. IEEE Trans. Image Process. 25(2), 935–948 (2015)

    Article  MathSciNet  Google Scholar 

  28. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 93–102 (2019)

    Google Scholar 

  29. Zhou, C.: Simulated annulling in convolutional neural network. In: 2022 2nd International Symposium on Artificial Intelligence and its Application on Media (ISAIAM), pp. 38–42. IEEE (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, Y., Jiang, B., Chen, D., Yang, YB. (2024). MVCAL: Multi View Clustering for Active Learning. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1963. Springer, Singapore. https://doi.org/10.1007/978-981-99-8138-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8138-0_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8137-3

  • Online ISBN: 978-981-99-8138-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics