Skip to main content

LDW-RS Loss: Label Density-Weighted Loss with Ranking Similarity Regularization for Imbalanced Deep Fetal Brain Age Regression

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1964))

Included in the following conference series:

Abstract

Estimation of fetal brain age based on sulci by magnetic resonance imaging (MRI) is crucial in determining the normal development of the fetal brain. Deep learning provides a possible way for fetal brain age estimation using MRI. However, real-world MRI datasets often present imbalanced label distribution, resulting in the model tending to show undesirable bias towards the majority of labels. Thus, many methods have been designed for imbalanced regression. Nevertheless, most of them on handling imbalanced data focus on targets with discrete categorical indices, without considering the continuous and ordered nature of target values. To fill the research gap of fetal brain age estimation with imbalanced data, we propose a novel label density-weighted loss with a ranking similarity regularization (LDW-RS) for deep imbalanced regression of the fetal brain age. Label density-weighted loss is designed to capture information about the similarity between neighboring samples in the label space. Ranking similarity regularization is developed to establish a global constraint for calibrating the biased feature representations learned by the network. A total of 1327 MRI images from 157 healthy fetuses between 22 and 34 weeks were used in our experiments for the fetal brain age estimation regression task. In the random experiments, our LDW-RS achieved promising results with an average mean absolute error of 0.760 ± 0.066 weeks and an R-square (\({\mathrm{R}}^{2}\)) coefficient of 0.914 ± 0.020. Our fetal brain age estimation algorithm might be useful for identifying abnormalities in brain development and reducing the risk of adverse development in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glenn, O.A., Barkovich, A.J.: Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, Part 1. Am. J. Neuroradiol. 27(8), 1604–1611 (2006)

    Google Scholar 

  2. Nie, W., et al.: Deep learning with modified loss function to predict gestational age of the fetal brain. In: International Conference on Signal and Image Processing, pp. 572–575 (2022)

    Google Scholar 

  3. Prayer, D., Malinger, G., et al.: ISUOG practice guidelines (updated): performance of fetal magnetic resonance imaging. Int. Soc. Ultrasound Obstet. Gynecol. 61(2), 278–287 (2023)

    Article  Google Scholar 

  4. Hu, D., Wu, Z., et al.: Hierarchical rough-to-fine model for infant age prediction based on cortical features. IEEE J. Biomed. Health Inform. 24(1), 214–225 (2020)

    Article  Google Scholar 

  5. Lee, C., Willis, A., Chen, C., et al.: Development of a machine learning model for sonographic assessment of gestational age. JAMA Netw. Open 6(1), e2248685 (2023)

    Article  Google Scholar 

  6. Shen, L., Shpanskaya, K. S., Lee, E., et al.: Deep learning with attention to predict gestational age of the fetal brain. arXiv preprint arXiv:1812.07102 (2018)

  7. Shi, W., Yan, G., Li, Y., et al.: Fetal brain age estimation and anomaly detection using attention-based deep ensembles with uncertainty. Neuroimage 223, 117316 (2020)

    Article  Google Scholar 

  8. Shen, L., Zheng, J., Lee, E.H., et al.: Attention-guided deep learning for gestational age prediction using fetal brain MRI. Sci. Rep. 12(1), 1408 (2022)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Liao, L., Zhang, X., Zhao, F., et al.: Multi-branch deformable convolutional neural network with label distribution learning for fetal brain age prediction. In: IEEE 17th International Symposium on Biomedical Imaging, pp. 424–427 (2020)

    Google Scholar 

  11. Yuan, P., Lin, S., Cui, C., et al.: HS-ResNet: hierarchical-split block on convolutional neural network. arXiv preprint arXiv:2010.07621 (2020)

  12. Yang, Y., Zha, K., Chen, Y., et al.: Delving into deep imbalanced regression. arXiv preprint arXiv:2102.09554 (2021)

  13. Ding, Y., et al.: Deep imbalanced regression using cost-sensitive learning and deep feature transfer for bearing remaining useful life estimation. Appl. Soft Comput. 127(5) (2022)

    Google Scholar 

  14. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. arXiv preprint arXiv:1511.05547 (2016)

  15. Gong, Y., Mori, G., Tung, F.: RankSim: ranking similarity regularization for deep imbalanced regression. arXiv preprint arXiv:2205.15236 (2022)

  16. Rolinek, M., Musil, V., et al.: Optimizing rank-based metrics with blackbox differentiation. In: Conference on Computer Vision and Pattern Recognition, pp. 7617–7627 (2020)

    Google Scholar 

  17. MarinVlastelica, P., Paulus, A., Musil, V., et al.: Differentiation of blackbox combinatorial solvers. arXiv preprint arXiv:1912.02175 (2019)

  18. Ren, J., Zhang, M., Yu, C., Liu, Z.: Balanced MSE for imbalanced visual regression. In: Conference on Computer Vision and Pattern Recognition, pp. 7916–7925 (2022)

    Google Scholar 

  19. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 318–327 (2017)

    Google Scholar 

  20. Dosovitskiy, A., Beyer, L., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv: 2010.11929. (2020)

    Google Scholar 

  21. Liu, Z., Lin, Y., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: IEEE/CVF International Conference on Computer Vision, pp. 9992–10002 (2021)

    Google Scholar 

  22. Namburete, A.I., Stebbing, R.V., et al.: Learning-based prediction of gestational age from ultrasound images of the fetal brain. Med. Image Anal. 21, 72–86 (2015)

    Article  Google Scholar 

  23. Cui, Y., Jia, M., Lin, T., Song, Y., Belongie, S.J.: Class-balanced loss based on effective number of samples. In: Computer Vision and Pattern Recognition, pp. 9260–9269 (2019)

    Google Scholar 

  24. Chawla, N., Bowyer, K., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. arXiv preprint arXiv: 1106.1813 (2002)

    Google Scholar 

  25. Wang, Y., Ramanan, D., Hebert, M.: Learning to model the tail. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 7032–7042 (2017)

    Google Scholar 

  26. Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 185–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_12

  27. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  28. Torgo, L., Ribeiro, R.P., Pfahringer, B., Branco, P.: SMOTE for regression. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS, vol. 8154, pp. 378–389. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40669-0_33

  29. Branco, P., et al.: SMOGN: a pre-processing approach for imbalanced regression. In: Proceedings of Machine Learning Research, 74, pp. 36–50 (2017)

    Google Scholar 

  30. Tanveer, M., Ganaie, M.A., Beheshti, I., et al.: Deep learning for brain age estimation: a systematic review. arXiv preprint arXiv:2212.03868 (2022)

  31. Wright, R., Kyriakopoulou, V., et al.: Automatic quantification of normal cortical folding patterns from fetal brain MRI. Neuroimage 91, 21–32 (2014)

    Article  Google Scholar 

  32. Hong, J., Yun, H.J., et al.: Optimal method for fetal brain age prediction using multiplanar slices from structural magnetic resonance imaging. Front. Neurosci. 15 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant No. 62201203, the Natural Science Foundation of Hubei Province, China under grant No. 2021CFB282, the High-level Talents Fund of Hubei University of Technology, China under grant No. GCRC2020016, the Doctoral Scientific Research Foundation of Hubei University of Technology, China under grant No. BSDQ2020064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Wang, S., Xia, W., Fenster, A., Gan, H., Zhou, R. (2024). LDW-RS Loss: Label Density-Weighted Loss with Ranking Similarity Regularization for Imbalanced Deep Fetal Brain Age Regression. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1964. Springer, Singapore. https://doi.org/10.1007/978-981-99-8141-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8141-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8140-3

  • Online ISBN: 978-981-99-8141-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics