Skip to main content

A Supervised Spatio-Temporal Contrastive Learning Framework with Optimal Skeleton Subgraph Topology for Human Action Recognition

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1964))

Included in the following conference series:

  • 342 Accesses

Abstract

Human action recognition (HAR) is a hotspot in the field of computer vision, the models based on Graph Convolutional Network (GCN) show great advantages in skeleton-based HAR. However,most existing GCN based methods do not consider the diversity of action trajectories, and not highlight the key joints. To address these issues, a supervised spatio-temporal contrastive learning framework with optimal skeleton subgraph topology for HAR (SSTCL-optSST) is proposed. SSTCL-optSST uses the samples with the same lablel as the target action (anchor) to build a positive sample set, each of them represents a trajectory of an action. The sample set is used to design a loss function to guide the model recognize different poses of the action. Furthermore, the subgraphs of an original skeleton graph are used to construct a skeleton subgraph topology space, each subgraph in it is evaluated, and the optimal one is selected to highlight the key joints. Extensive experiments have been conducted on NTU RGB+D 60 and Kinetics datasets, the results show that our model has competitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gajjar, V., Gurnani, A., Khandhediya, Y.: Human detection and tracking for video surveillance: a cognitive science approach. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2805–2809 (2017)

    Google Scholar 

  2. Sahaï, A., Desantis, A., Grynszpan, O., Pacherie, E., Berberian, B.: Action co-representation and the sense of agency during a joint simon task: comparing human and machine co-agents. Conscious. Cogn. 67, 44–55 (2019)

    Article  Google Scholar 

  3. Pilarski, P.M., Butcher, A., Johanson, M., Botvinick, M.M., Bolt, A., Parker, A.S.: Learned human-agent decision-making, communication and joint action in a virtual reality environment. arXiv preprint arXiv:1905.02691 (2019)

  4. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)

    Google Scholar 

  5. Liu, J., Shahroudy, A., Xu, D., Wang, G.: Spatio-temporal LSTM with trust gates for 3D human action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 816–833. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_50

    Chapter  Google Scholar 

  6. Kim, T.S., Reiter, A.: Interpretable 3D human action analysis with temporal convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 (2017)

    Google Scholar 

  7. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  8. Duan, H., Zhao, Y., Chen, K., Lin,D., Dai, B.: Revisiting skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2969–2978 (2022)

    Google Scholar 

  9. Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., Fergus, R.: Training convolutional networks with noisy labels. arXiv preprint arXiv:1406.2080 (2014)

  10. Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., Zheng, N.: View adaptive recurrent neural networks for high performance human action recognition from skeleton data. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2117–2126 (2017)

    Google Scholar 

  11. Ji, X., Zhao, Q., Cheng, J., Ma, C.: Exploiting spatio-temporal representation for 3D human action recognition from depth map sequences. Knowl.-Based Syst. 227, 107040 (2021)

    Article  Google Scholar 

  12. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12026–12035 (2019)

    Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  14. Zhang, P., Lan, C., Zeng, W., Xing, J., Xue, J., Zheng, N.: Semantics-guided neural networks for efficient skeleton-based human action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1112–1121 (2020)

    Google Scholar 

  15. Peng, W., Hong, X., Zhao, G.: Tripool: graph triplet pooling for 3d skeleton-based action recognition. Pattern Recogn. 115, 107921 (2021)

    Article  Google Scholar 

  16. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 297–304. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  17. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  18. Khosla, P.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  19. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  20. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network, vol. 2, no. 7. arXiv preprint arXiv:1503.02531 (2015)

  21. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  22. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: Ntu rgb+ d: a large scale dataset for 3d human activity analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010–1019 (2016)

    Google Scholar 

  23. Kay, W., et al. The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  24. Rao, H., Shihao, X., Xiping, H., Cheng, J., Bin, H.: Augmented skeleton based contrastive action learning with momentum LSTM for unsupervised action recognition. Inf. Sci. 569, 90–109 (2021)

    Article  Google Scholar 

  25. Dai, C., Wei, Y., Xu, Z., Chen, M., Liu, Y., Fan, J.: ConMLP: MLP-based self-supervised contrastive learning for skeleton data analysis and action recognition. Sensors 23(5), 2452 (2023)

    Article  Google Scholar 

  26. Li, C., Xie, C., Zhang, B., Han, J., Zhen, X., Chen, J.: Memory attention networks for skeleton-based action recognition. IEEE Trans. Neural Netw. Learn. Syst. 33(9), 4800–4814 (2021)

    Article  Google Scholar 

  27. Li, S., Yi, J., Farha, Y.A., Gall, J.: Pose refinement graph convolutional network for skeleton-based action recognition. IEEE Rob. Autom. Lett. 6(2), 1028–1035 (2021)

    Article  Google Scholar 

  28. Ding, W., Li, X., Li, G., Wei, Y.: Global relational reasoning with spatial temporal graph interaction networks for skeleton-based action recognition. Signal Process. Image Commun. 83, 115776 (2020)

    Article  Google Scholar 

  29. Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Actional-structural graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3595–3603 (2019)

    Google Scholar 

  30. Gao, X., Hu, W., Tang, J., Liu,J., Guo, Z.: Optimized skeleton-based action recognition via sparsified graph regression. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 601–610 (2019)

    Google Scholar 

  31. Liu, Y., Zhang, H., Dan, X., He, K.: Graph transformer network with temporal kernel attention for skeleton-based action recognition. Knowl.-Based Syst. 240, 108146 (2022)

    Article  Google Scholar 

  32. Li, B., Li, X., Zhang, Z., Fei, W.: Spatio-temporal graph routing for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8561–8568 (2019)

    Google Scholar 

  33. Yoon, Y., Jongmin, Yu., Jeon, M.: Predictively encoded graph convolutional network for noise-robust skeleton-based action recognition. Appl. Intell. 52(3), 2317–2331 (2022)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant No. 61977018; Natural Science Foundation of Changsha under Grant No. kq2202215; Practical Innovation and Entrepreneurship Enhancement Program for Professional Degree Postgraduates of Changsha University of Science and Technology (CLSJCX22114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, Z. et al. (2024). A Supervised Spatio-Temporal Contrastive Learning Framework with Optimal Skeleton Subgraph Topology for Human Action Recognition. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1964. Springer, Singapore. https://doi.org/10.1007/978-981-99-8141-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8141-0_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8140-3

  • Online ISBN: 978-981-99-8141-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics