Skip to main content

A Novel Approach forĀ Improved Pedestrian Walking Speed Prediction: Exploiting Proximity Correlation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1964))

Included in the following conference series:

  • 345 Accesses

Abstract

Accurately predicting pedestrian speed is crucial for analyzing pedestrian behavior and optimizing intelligent transportation systems. This paper investigates the feasibility of modeling pedestrian walking speed as a time series. Building upon previous research highlighting the spatio-temporal nearest neighbor correlation in pedestrian walking speed, we propose a deep learning method that leverages this correlation. Experimental results demonstrate the superiority of our approach over traditional methods in accurately predicting pedestrian walking speed and capturing temporal characteristics and trends. The findings of this study have significant implications for enhancing pedestrian traffic flow management, improving the pedestrian travel experience, and enhancing overall traffic safety. Future research can focus on exploring advanced time series methods and deep learning models to further enhance the accuracy and practicality of pedestrian walking speed prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bohannon, R.W., Andrews, A.W.: Normal walking speed: a descriptive meta-analysis. Physiotherapy 97(3), 182ā€“189 (2011)

    ArticleĀ  Google ScholarĀ 

  2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  3. El Hamdani, S., Benamar, N., Younis, M.: Pedestrian support in intelligent transportation systems: challenges, solutions and open issues. Transp. Res. Part C: Emerg. Technol. 121, 102856 (2020)

    ArticleĀ  Google ScholarĀ 

  4. Finnis, K.K., Walton, D.: Field observations to determine the influence of population size, location and individual factors on pedestrian walking speeds. Ergonomics 51(6), 827ā€“842 (2008)

    ArticleĀ  Google ScholarĀ 

  5. Finnis, K., Walton, D.: Field observations of factors influencing walking speeds. In: 2nd International Conference on Sustainability Engineering and Science (2007)

    Google ScholarĀ 

  6. Fitzpatrick, K., Brewer, M.A., Turner, S.: Another look at pedestrian walking speed. Transp. Res. Rec. 1982(1), 21ā€“29 (2006)

    ArticleĀ  Google ScholarĀ 

  7. Fossum, M., Ryeng, E.O.: The walking speed of pedestrians on various pavement surface conditions during winter. Transp. Res. Part D: Transp. Environ. 97, 102934 (2021)

    ArticleĀ  Google ScholarĀ 

  8. Franěk, M.: Environmental factors influencing pedestrian walking speed. Percept. Mot. Skills 116(3), 992ā€“1019 (2013)

    ArticleĀ  Google ScholarĀ 

  9. Franěk, M., Režnį»³, L.: Environmental features influence walking speed: the effect of urban greenery. Land 10(5), 459 (2021)

    ArticleĀ  Google ScholarĀ 

  10. Franěk, M., Režnį»³, L., Å efara, D., Cabal, J.: Effect of traffic noise and relaxations sounds on pedestrian walking speed. Int. J. Environ. Res. Public Health 15(4), 752 (2018)

    ArticleĀ  Google ScholarĀ 

  11. Fujiyama, T., Tyler, N.: Predicting the walking speed of pedestrians on stairs. Transp. Plan. Technol. 33(2), 177ā€“202 (2010)

    ArticleĀ  Google ScholarĀ 

  12. Hausdorff, J.M.: Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum. Mov. Sci. 26(4), 555ā€“589 (2007)

    ArticleĀ  Google ScholarĀ 

  13. Li, Q., Young, M., Naing, V., Donelan, J.: Walking speed estimation using a shank-mounted inertial measurement unit. J. Biomech. 43(8), 1640ā€“1643 (2010)

    ArticleĀ  Google ScholarĀ 

  14. Liang, S., Leng, H., Yuan, Q., Wang, B., Yuan, C.: How does weather and climate affect pedestrian walking speed during cool and cold seasons in severely cold areas? Build. Environ. 175, 106811 (2020)

    ArticleĀ  Google ScholarĀ 

  15. Park, J.G., Patel, A., Curtis, D., Teller, S., Ledlie, J.: Online pose classification and walking speed estimation using handheld devices. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 113ā€“122 (2012)

    Google ScholarĀ 

  16. Perrin, O., Terrier, P., Ladetto, Q., Merminod, B., Schutz, Y.: Improvement of walking speed prediction by accelerometry and altimetry, validated by satellite positioning. Med. Biol. Eng. Compu. 38, 164ā€“168 (2000)

    ArticleĀ  Google ScholarĀ 

  17. Pinna, F., Murrau, R.: Age factor and pedestrian speed on sidewalks. Sustainability 10(11), 4084 (2018)

    ArticleĀ  Google ScholarĀ 

  18. Silva, A.M.C.B., da Cunha, J.R.R., da Silva, J.P.C.: Estimation of pedestrian walking speeds on footways. In: Proceedings of the Institution of Civil Engineers-Municipal Engineer, vol. 167, pp. 32ā€“43. Thomas Telford Ltd. (2014)

    Google ScholarĀ 

  19. Soltani, A., et al.: Algorithms for walking speed estimation using a lower-back-worn inertial sensor: a cross-validation on speed ranges. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 1955ā€“1964 (2021)

    ArticleĀ  Google ScholarĀ 

  20. Tarawneh, M.S.: Evaluation of pedestrian speed in Jordan with investigation of some contributing factors. J. Safety Res. 32(2), 229ā€“236 (2001)

    ArticleĀ  Google ScholarĀ 

  21. Tolea, M.I., et al.: Sex-specific correlates of walking speed in a wide age-ranged population. J. Gerontol. B Psychol. Sci. Soc. Sci. 65(2), 174ā€“184 (2010)

    ArticleĀ  Google ScholarĀ 

  22. Wu, C.J., Kuo, C.H., Lin, Y.H., Liu, W.Y.: A feasible model training for LSTM-based dual foot-mounted pedestrian INS. IEEE Sens. J. 21(12), 13616ā€“13627 (2021)

    ArticleĀ  Google ScholarĀ 

  23. Yang, S., Laudanski, A., Li, Q.: Inertial sensors in estimating walking speed and inclination: an evaluation of sensor error models. Med. Biolog. Eng. Comput. 50, 383ā€“393 (2012)

    ArticleĀ  Google ScholarĀ 

  24. Yoshida, T., et al.: Sampling rate dependency in pedestrian walking speed estimation using DualCNN-LSTM. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 862ā€“868 (2019)

    Google ScholarĀ 

  25. Yoshida, T., Nozaki, J., Urano, K., Hiroi, K., Yonezawa, T., Kawaguchi, N.: Gait dependency of smartphone walking speed estimation using deep learning (poster). In: Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services, pp. 641ā€“642 (2019)

    Google ScholarĀ 

  26. Zihajehzadeh, S., Park, E.J.: Regression model-based walking speed estimation using wrist-worn inertial sensor. PLoS ONE 11(10), e0165211 (2016)

    ArticleĀ  Google ScholarĀ 

  27. Zijlstra, W.: Assessment of spatio-temporal parameters during unconstrained walking. Eur. J. Appl. Physiol. 92, 39ā€“44 (2004)

    ArticleĀ  Google ScholarĀ 

  28. Zijlstra, W., Hof, A.L.: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18(2), 1ā€“10 (2003)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Tao, Z., Wang, M., Zhou, Y. (2024). A Novel Approach forĀ Improved Pedestrian Walking Speed Prediction: Exploiting Proximity Correlation. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1964. Springer, Singapore. https://doi.org/10.1007/978-981-99-8141-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8141-0_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8140-3

  • Online ISBN: 978-981-99-8141-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics