Skip to main content

User Multi-preferences Fusion for Conversational Recommender Systems

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1964))

Included in the following conference series:

  • 798 Accesses

Abstract

Conversational recommender systems (CRS) aim to provide recommendations by inferring user preferences during conversations. Many current CRS models utilize third-party information, such as reviews, to supplement the extraction of user preferences. Consequently, users develop preferences for third-party information and their own preferences extracted from original dialog data. However, the prevailing approach of combining these preferences as a unified whole for self-attention at the element level compromises their independence. In real-life decision-making, we refer to third-party information and it is important to distinguish whether the reference is from a third party or from the original dialog data. This paper emphasizes the independence of users’ own preferences and third-party information. To effectively integrate multiple user preferences, we propose an Attentive Wide Deep Conversational Recommender (AWDCore). Specifically, we design an attentive wide linear module and an attentive deep neural network to capture the low-order linear and high-order nonlinear relationships between the user’s own preference and third-party information, respectively. To highlight the significance of the user’s current preference, we incorporate attention mechanisms and a SENet layer in the wide module and deep neural networks, respectively. The learned user preferences are then employed for recommendation and dialogue generation. Extensive experiments have demonstrated the effectiveness of our approach in both recommendation and conversation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://movie.douban.com/.

  2. 2.

    https://www.imdb.com/.

References

  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC-2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  2. Chen, Q., et al.: Towards knowledge-based recommender dialog system. In: EMNLP, pp. 1803–1813 (2019)

    Google Scholar 

  3. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: DLRS, pp. 7–10 (2016)

    Google Scholar 

  4. Christakopoulou, K., Radlinski, F., Hofmann, K.: Towards conversational recommender systems. In: SIGKDD (2016)

    Google Scholar 

  5. Gao, T., Yao, X., Chen, D.: SimCSE: simple contrastive learning of sentence embeddings. arXiv arXiv:2104.08821 (2021)

  6. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. In: IJCAI, pp. 1725–1731 (2017)

    Google Scholar 

  7. He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics. In: SIGIR, pp. 355–364 (2017)

    Google Scholar 

  8. Hu, J., Shen, L., Sun, G., Albanie, S.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  9. Kang, W.C., Mcauley, J.: Self-attentive sequential recommendation. In: ICDM, pp. 197–206 (2018)

    Google Scholar 

  10. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP, pp. 1746–1751 (2014)

    Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv arXiv:1609.02907 (2016)

  12. Lei, W., et al.: Estimation-action-reflection: towards deep interaction between conversational and recommender systems. In: WSDM, pp. 304–312 (2020)

    Google Scholar 

  13. Li, R., Kahou, S., Schulz, H., Michalski, V., Charlin, L., Pal, C.: Towards deep conversational recommendations. In: NeurIPS, pp. 9748–9758 (2018)

    Google Scholar 

  14. Li, S., Xie, R., Zhu, Y., Ao, X., Zhuang, F., He, Q.: User-centric conversational recommendation with multi-aspect user modeling. In: SIGIR, pp. 223–233 (2022)

    Google Scholar 

  15. Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xDeepFM: combining explicit and implicit feature interactions for recommender systems. In: SIGKDD, pp. 1754–1763 (2018)

    Google Scholar 

  16. Lu, Y., et al.: RevCore: review-augmented conversational recommendation. In: ACL, pp. 1161–1173 (2021)

    Google Scholar 

  17. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: ACL, pp. 311–318 (2002)

    Google Scholar 

  18. Rahali, A., Akhloufi, M.A.: End-to-end transformer-based models in textual-based NLP. AI 4, 54–110 (2023)

    Article  Google Scholar 

  19. Ren, X., Yin, H., Chen, T., Wang, H., Zheng, K.: Learning to ask appropriate questions in conversational recommendation. In: SIGIR, pp. 808–817 (2021)

    Google Scholar 

  20. Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: 15th International Conference on the Semantic Web, ESWC, pp. 593–607 (2018)

    Google Scholar 

  21. Song, W., Shi, C., Xiao, Z., Duan, Z., Tang, J.: AutoInt: automatic feature interaction learning via self-attentive neural networks. In: ACM (2019)

    Google Scholar 

  22. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: AAAI, pp. 4444–4451 (2017)

    Google Scholar 

  23. Thakkar, P., Varma, K., Ukani, V., Mankad, S., Tanwar, S.: Combining user-based and item-based collaborative filtering using machine learning. In: Satapathy, S.C., Joshi, A. (eds.) Information and Communication Technology for Intelligent Systems. SIST, vol. 107, pp. 173–180. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1747-7_17

    Chapter  Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 6000–6010 (2017)

    Google Scholar 

  25. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions. In: ADKDD (2017)

    Google Scholar 

  26. Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., Chua, T.S.: Attentional factorization machines: Learning the weight of feature interactions via attention networks. In: IJCAI, pp. 3119–3125 (2017)

    Google Scholar 

  27. Xie, Z., Yu, T., Zhao, C., Li, S.: Comparison-based conversational recommender system with relative bandit feedback. In: SIGIR (2021)

    Google Scholar 

  28. Zhou, K., Zhou, Y., Zhao, W.X., Wang, X., Wen, J.R.: Towards topic-guided conversational recommender system. In: COLING, pp. 4128–4139 (2020)

    Google Scholar 

  29. Zhou, K., Zhao, W.X., Bian, S., Zhou, Y., Wen, J.R., Yu, J.: Improving conversational recommender systems via knowledge graph based semantic fusion. In: SIGKDD, pp. 1006–1014 (2020)

    Google Scholar 

  30. Zhou, Y., Zhou, K., Zhao, W.X., Wang, C., Jiang, P., Hu, H.: C\(^2\)-crs: Coarse-to-fine contrastive learning for conversational recommender system. In: WSDM (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62376188, 62272340, 61876129, 62276187, 61976154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Zhao, D., Wang, B., Huang, K., He, R., Hou, Y. (2024). User Multi-preferences Fusion for Conversational Recommender Systems. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1964. Springer, Singapore. https://doi.org/10.1007/978-981-99-8141-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8141-0_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8140-3

  • Online ISBN: 978-981-99-8141-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics