Skip to main content

An Effective Morphological Analysis Framework of Intracranial Artery in 3D Digital Subtraction Angiography

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Acquiring accurate anatomy information of intracranial artery from 3D digital subtraction angiography (3D-DSA) is crucial for intracranial artery intervention surgery. However, this task often comes with challenges of large-scale image and memory constraints. In this paper, an effective two-stage framework is proposed for fully automatic morphological analysis of intracranial artery. In the first stage, the proposed Region-Global Fusion Network (RGFNet) achieves accurate and continuous segmentation of intracranial artery. In the second stage, the 3D morphological analysis algorithm obtains the access diameter, the minimum inner diameter and the minimum radius of curvature of intracranial artery. RGFNet achieves state-of-the-art performance (93.36% in Dice, 87.83% in mIoU and 15.64 in HD95) in the 3D-DSA intracranial artery segmentation dataset, and the proposed morphological analysis algorithm also shows effectiveness in obtaining accurate anatomy information. The proposed framework is not only helpful for surgeons to plan the procedures of interventional surgery but also promising to be integrated to robotic navigation systems, enabling robotic-assisted surgery.

H. Zhao and T. Wang—Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nassef, A.M., Awad, E.M., El-bassiouny, A.A., et al.: Endovascular stenting of medically refractory intracranial arterial stenotic (ICAS) disease (clinical and sonographic study). Egypt. J. Neurol. Psychiatry Neurosurg. 56(1), 1–12 (2020)

    Article  Google Scholar 

  2. Gao, P., Wang, T., Wang, D., et al.: Effect of stenting plus medical therapy vs medical therapy alone on risk of stroke and death in patients with symptomatic intracranial stenosis: the CASSISS randomized clinical trial. J. Am. Med. Assoc. 328(6), 534–542 (2022)

    Article  Google Scholar 

  3. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

  5. Balsiger, F., Soom, Y., Scheidegger, O., Reyes, M.: Learning shape representation on sparse point clouds for volumetric image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019, Part II. LNCS, vol. 11765, pp. 273–281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_31

  6. Milletari, F., Navab, N., Ahmadi, S.A..: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  7. Chen, H., Dou, Q., Yu, L., et al.: VoxResNet: deep voxelwise residual networks for volumetric brain segmentation. arXiv preprint arXiv:1608.05895 (2016)

  8. Chen, J., Lu, Y., Yu, Q., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  9. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part I. LNCS vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11

  10. Hatamizadeh, A., Tang, Y., Nath, V., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  11. Tang, Y., Yang, D., Li, W., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20730–20740 (2022)

    Google Scholar 

  12. Dosovitskiy A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  13. Liu, Z., Lin, Y., Cao, Y., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022 (2021)

    Google Scholar 

  14. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) ECCV 2022, Part III. LNCS vol. 13803, pp. 205–218. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25066-8_9

  15. Peiris, H., Hayat, M., Chen, Z., Egan, G., Harandi, M.: A robust volumetric transformer for accurate 3D tumor segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022, Part V. LNCS, vol. 13435, pp. 162–172. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_16

  16. Palágyi, K., et al.: A sequential 3D thinning algorithm and its medical applications. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 409–415. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45729-1_42

  17. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China under Grant (2022YFB4700902), the National High Level Hospital Clinical Research Funding (2022-PUMCH-B-125), and the National Natural Science Foundation of China under Grant (62303463, U1913210, 62073325, 62003343, 62222316).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiqi Liu or Xiaoliang Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, H. et al. (2024). An Effective Morphological Analysis Framework of Intracranial Artery in 3D Digital Subtraction Angiography. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1964. Springer, Singapore. https://doi.org/10.1007/978-981-99-8141-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8141-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8140-3

  • Online ISBN: 978-981-99-8141-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics