Abstract
In the field of marine ecological named entity recognition (NER), challenges arise due to limited domain-specific text, weak semantic representations of input vectors and the neglect of local features. To address these challenges of NER in a low-resource environment, a deep learning-based few-shot NER model was proposed. Firstly, Sequence Generative Adversarial Nets (SeqGAN) was utilized to train on the original text and generated new text, thereby expanding the original corpus. Subsequently, BERT-IDCNN-BiLSTM-CRF was introduced for extracting marine ecological entities. BERT (Bidirectional Encoder Representation from Transformers) was pre-trained on the expanded corpus. The embeddings produced by BERT were then fed into Iterative Dilation Convolutional Networks (IDCNN) and Bidirectional Long Short-Term Memory Networks (BiLSTM) to facilitate feature extraction. Finally, Conditional Random Fields (CRF) was employed to enforce label sequence constraints and yielded the final results. For the proposed few-shot NER method based on deep learning, comparative experiments were conducted horizontally and vertically against BiLSTM-CRF, IDCNN-CRF, BERT-IDCNN-CRF and BERT-BiLSTM-CRF models on both the original and expanded corpora. The results show that BERT-IDCNN-BiLSTM-CRF outperforms BERT-BiLSTM-CRF by 2.48 percentage points in F1-score on the original corpus. On the expanded corpus, BERT-IDCNN-BiLSTM-CRF achieves a F1-score 2.65 percentage points higher than that on the original corpus. This approach effectively enhances entity extraction in the domain of marine ecology, laying a foundation for downstream tasks such as constructing marine ecological knowledge graphs and ecological governance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, J., Sun, A., Han, J.: A survey on deep learning for named entity recognition. IEEE Trans. Knowl. Data Eng. 34(1), 50–70 (2022)
Liu, B.: Text sentiment analysis based on CBOW model and deep learning in big data environment. J. Ambient. Intell. Humaniz. Comput. 11(2), 451–458 (2018). https://doi.org/10.1007/s12652-018-1095-6
Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: International Conference on Computational Linguistics (2018)
Zhang, X., Guo, R., Huang, D.: Named entity recognition based on dependency. J. Chin. Inform. Process. 35(6), 63–73 (2021)
Li, L., Guo, Y.: Biomedical named entity recognition with CNN-BLSTM-CRF. J. Chin. Inform. Process. 32(1), 116–122 (2018)
Chen, K., Yan, Z., Huo, Q.: A context-sensitive-chunk BPTT approach to training deep LSTM/BLSTM recurrent neural networks for offline handwriting recognition. In: ICDAR (2015)
Cui L., Zhang Y.: Hierarchically-refined label attention network for sequence labeling. In: EMNLP-IJCNLP (2019)
Lafferty, J.D., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning, pp. 282–289 (2001)
Andrew, N.: Machine Learning Yearning. Self-publishing (2018)
Yang, H., Yu, H., Liu, J.: Fishery standard named entity recognition based on BERT+BiLSTM+CRF deep learning model and multivariate combination data augmentation. J. Dalian Ocean Univ. 36(4), 661–669 (2021)
Chen, X., Xu, L., Liu, Z., Sun, M., Luan, H.: Joint learning of character and word embeddings. In: International Joint Conference on Artificial Intelligence (2015)
Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets with policy gradient. In AAAI (2017)
Bachman, P., Precup, D.: Data generation as sequential decision making. In: NIPS (2015)
Devlin, J., Chang, M., Lee, K., Toutanova, K: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186 (2019)
Strubell, E., Verga, P., Belanger, D., McCallum, A.: Fast and accurate entity recognition with iterated dilated convolutions. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (2017)
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)
Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)
Sun, J., Yu, H., Feng, Y.: Recognition of nominated fishery domain entity based on deep learning architectures. J. Dalian Ocean Univ. 32(2), 265–269 (2018)
Feng, H., Sun, Y., Wu, T.: Chinese electronic medical record named entity recognition based on multi-features and IDCNN. J. Changzhou Univ. (Natl. Sci. Edn.) 35(1), 59–67 (2023)
Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF Models for Sequence Tagging (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, J., Liu, M., Zhao, D., Shi, S., Song, W. (2024). Few-Shot NER in Marine Ecology Using Deep Learning. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1965. Springer, Singapore. https://doi.org/10.1007/978-981-99-8145-8_2
Download citation
DOI: https://doi.org/10.1007/978-981-99-8145-8_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8144-1
Online ISBN: 978-981-99-8145-8
eBook Packages: Computer ScienceComputer Science (R0)