Skip to main content

Few-Shot NER in Marine Ecology Using Deep Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1965))

Included in the following conference series:

  • 401 Accesses

Abstract

In the field of marine ecological named entity recognition (NER), challenges arise due to limited domain-specific text, weak semantic representations of input vectors and the neglect of local features. To address these challenges of NER in a low-resource environment, a deep learning-based few-shot NER model was proposed. Firstly, Sequence Generative Adversarial Nets (SeqGAN) was utilized to train on the original text and generated new text, thereby expanding the original corpus. Subsequently, BERT-IDCNN-BiLSTM-CRF was introduced for extracting marine ecological entities. BERT (Bidirectional Encoder Representation from Transformers) was pre-trained on the expanded corpus. The embeddings produced by BERT were then fed into Iterative Dilation Convolutional Networks (IDCNN) and Bidirectional Long Short-Term Memory Networks (BiLSTM) to facilitate feature extraction. Finally, Conditional Random Fields (CRF) was employed to enforce label sequence constraints and yielded the final results. For the proposed few-shot NER method based on deep learning, comparative experiments were conducted horizontally and vertically against BiLSTM-CRF, IDCNN-CRF, BERT-IDCNN-CRF and BERT-BiLSTM-CRF models on both the original and expanded corpora. The results show that BERT-IDCNN-BiLSTM-CRF outperforms BERT-BiLSTM-CRF by 2.48 percentage points in F1-score on the original corpus. On the expanded corpus, BERT-IDCNN-BiLSTM-CRF achieves a F1-score 2.65 percentage points higher than that on the original corpus. This approach effectively enhances entity extraction in the domain of marine ecology, laying a foundation for downstream tasks such as constructing marine ecological knowledge graphs and ecological governance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, J., Sun, A., Han, J.: A survey on deep learning for named entity recognition. IEEE Trans. Knowl. Data Eng. 34(1), 50–70 (2022)

    Article  Google Scholar 

  2. Liu, B.: Text sentiment analysis based on CBOW model and deep learning in big data environment. J. Ambient. Intell. Humaniz. Comput. 11(2), 451–458 (2018). https://doi.org/10.1007/s12652-018-1095-6

    Article  Google Scholar 

  3. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: International Conference on Computational Linguistics (2018)

    Google Scholar 

  4. Zhang, X., Guo, R., Huang, D.: Named entity recognition based on dependency. J. Chin. Inform. Process. 35(6), 63–73 (2021)

    Google Scholar 

  5. Li, L., Guo, Y.: Biomedical named entity recognition with CNN-BLSTM-CRF. J. Chin. Inform. Process. 32(1), 116–122 (2018)

    MathSciNet  Google Scholar 

  6. Chen, K., Yan, Z., Huo, Q.: A context-sensitive-chunk BPTT approach to training deep LSTM/BLSTM recurrent neural networks for offline handwriting recognition. In: ICDAR (2015)

    Google Scholar 

  7. Cui L., Zhang Y.: Hierarchically-refined label attention network for sequence labeling. In: EMNLP-IJCNLP (2019)

    Google Scholar 

  8. Lafferty, J.D., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning, pp. 282–289 (2001)

    Google Scholar 

  9. Andrew, N.: Machine Learning Yearning. Self-publishing (2018)

    Google Scholar 

  10. Yang, H., Yu, H., Liu, J.: Fishery standard named entity recognition based on BERT+BiLSTM+CRF deep learning model and multivariate combination data augmentation. J. Dalian Ocean Univ. 36(4), 661–669 (2021)

    Google Scholar 

  11. Chen, X., Xu, L., Liu, Z., Sun, M., Luan, H.: Joint learning of character and word embeddings. In: International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  12. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets with policy gradient. In AAAI (2017)

    Google Scholar 

  13. Bachman, P., Precup, D.: Data generation as sequential decision making. In: NIPS (2015)

    Google Scholar 

  14. Devlin, J., Chang, M., Lee, K., Toutanova, K: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  15. Strubell, E., Verga, P., Belanger, D., McCallum, A.: Fast and accurate entity recognition with iterated dilated convolutions. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (2017)

    Google Scholar 

  16. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)

    Google Scholar 

  17. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)

    Article  Google Scholar 

  18. Sun, J., Yu, H., Feng, Y.: Recognition of nominated fishery domain entity based on deep learning architectures. J. Dalian Ocean Univ. 32(2), 265–269 (2018)

    Google Scholar 

  19. Feng, H., Sun, Y., Wu, T.: Chinese electronic medical record named entity recognition based on multi-features and IDCNN. J. Changzhou Univ. (Natl. Sci. Edn.) 35(1), 59–67 (2023)

    Google Scholar 

  20. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF Models for Sequence Tagging (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Liu, M., Zhao, D., Shi, S., Song, W. (2024). Few-Shot NER in Marine Ecology Using Deep Learning. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1965. Springer, Singapore. https://doi.org/10.1007/978-981-99-8145-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8145-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8144-1

  • Online ISBN: 978-981-99-8145-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics