Skip to main content

Enhancing Spatial Consistency and Class-Level Diversity for Segmenting Fine-Grained Objects

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1965))

Included in the following conference series:

  • 410 Accesses

Abstract

Semantic segmentation is a fundamental computer vision task attracting a lot of attention. However, limited works focus on semantic segmentation on fine-grained class scenario, which has more classes and greater inter-class similarity. Due to the lack of data available for this task, we establish two segmentation benchmarks, CUB-seg and FGSCR42-seg, based on CUB and FGSCR42 datasets. To solve the two major problems in this task, spatial inconsistency and extremely similar classes confusion, we propose the Spatial Consistency and Class-level Diversity enhancement Network. First, we build the Spatial Consistency Enhancement Module to take advantage of the low-frequency information in the feature, enhancing the spatial consistency. Second, Fine-grained Regions Contrastive Loss is designed to make the features of different classes more discriminative, promoting the class-level diversity. Extensive experiments show that our method can significantly improve the performance compared to baseline models. Visualization study also prove the effectiveness of our method for enhancing spatial consistency and class-level diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Long, J., Evan, S., Trevor, D.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  2. Badrinarayanan, V., Alex, K., Roberto, C.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Google Scholar 

  3. Chen, L., George, P., Iasonas, K., Kevin, M., Alan, L.Y.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint http://arxiv.org/abs/1412.7062 (2014)

  4. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  5. Chen, L., George, P., Iasonas, K., Kevin, M., Alan, L.Y.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2017)

    Google Scholar 

  6. Tian, Z., Zhao, H., Shu, M., Yang, Z., Li, R., Jia, J.: Prior guided feature enrichment network for few-shot segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 44(2), 1050–1065 (2020)

    Google Scholar 

  7. Zhao, Q., Liu, B., Lyu, S., Chen, H.: A self-distillation embedded supervised affinity attention model for few-shot segmentation. IEEE Trans. Cogn. Dev. Syst. (2023). https://doi.org/10.1109/TCDS.2023.3251371

  8. Bucher, M., Vu, T., Matthieu, C., Patrick, P.: Zero-shot semantic segmentation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  9. Xia, F., Wang, P., Chen, X., Alan, L.Y.: Joint multi-person pose estimation and semantic part segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6769–6778 (2017)

    Google Scholar 

  10. Zhang, X., Zhao, W., Luo, H., Peng, J., Fan, J.: Class guided channel weighting network for fine-grained semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 3, pp. 3344–3352 (2022)

    Google Scholar 

  11. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 dataset. In: Computation and Neural Systems Technical Report, 2010–001 (2011)

    Google Scholar 

  12. Di, Y., Jiang, Z., Zhang, H.: A public dataset for fine-grained ship classification in optical remote sensing images. Remote Sens. 13(4), 747 (2021). https://doi.org/10.3390/rs13040747

  13. Sofiiuk, K., Petrov, I., Barinova, O., Konushin, A.: F-BRS: rethinking backpropagating refinement for interactive segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8620–8629 (2020). https://doi.org/10.1109/CVPR42600.2020.00865

  14. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  15. Chen, L., George P., Florian S., Hartwig A.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint http://arxiv.org/abs/1706.05587 (2017)

  16. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 603–612 (2019)

    Google Scholar 

  17. Enze, X., Wenhai, W., Zhiding, Y., Anima A., Jose, A., Ping, L.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: Advances in Neural Information Processing Systems, vol. 34, pp. 12077–12090 (2021)

    Google Scholar 

  18. Everingham, M., Eslami, S., Van, G., Williams, C., Winn, J., Zisserman, A.: The PASCAL visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)

    Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  21. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  22. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  23. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2020)

    Google Scholar 

  24. Zhuang, P., Wang, Y., Qiao, Y.: Learning attentive pairwise interaction for fine-grained classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 13130–13137 (2020)

    Google Scholar 

  25. He, J., et al.: TransFG: a transformer architecture for fine-grained recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 1, pp. 852–860 (2022)

    Google Scholar 

  26. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.: Novel dataset for fine-grained image categorization: Stanford dogs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2011)

    Google Scholar 

  27. Kaiming, H., Xiangyu, Z., Shaoqing, R., Jian, S.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62072021 and 62002005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Q., Liu, B., Lyu, S., Wang, C., Yang, Y. (2024). Enhancing Spatial Consistency and Class-Level Diversity for Segmenting Fine-Grained Objects. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1965. Springer, Singapore. https://doi.org/10.1007/978-981-99-8145-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8145-8_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8144-1

  • Online ISBN: 978-981-99-8145-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics