Skip to main content

PTCP: Alleviate Layer Collapse in Pruning at Initialization via Parameter Threshold Compensation and Preservation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1965))

Included in the following conference series:

  • 424 Accesses

Abstract

Over-parameterized neural networks have good performance, but training such networks is computationally expensive. Pruning at initialization (PaI) avoids training a full network, which has attracted intense interest. But at high compression ratios, layer collapse severely compromises the performance of PaI. Existing methods introduce operations such as iterative pruning to alleviate layer collapse. However, these operations require additional computing and memory costs. In this paper, we focus on alleviating layer collapse without increasing cost. Therefore, we propose an efficient strategy called parameter threshold compensation. This strategy constrains the lower limit of network layer parameters and uses parameter transfer to compensate for layers with fewer parameters. To promote a more balanced transfer of parameters, we further propose a parameter preservation strategy, using the average number of preserved parameters to more strongly constrain the layers that reduce parameters. We conduct extensive experiments on five pruning methods on Cifar10 and Cifar100 datasets using VGG16 and ResNet18 architectures, verifying the effectiveness of our strategy. Furthermore, we compare the improved performance with two SOTA methods. The comparison results show that our strategy achieves similar performance, challenging the design of increasingly complex pruning strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/facebookresearch/open_lth.

  2. 2.

    https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py.

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  2. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  3. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015)

    Google Scholar 

  4. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  5. Wen, J., Zhao, Z., Cui, J., Chen, B.M.: Model-based reinforcement learning with self-attention mechanism for autonomous driving in dense traffic. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) ICONIP 2022. LNCS, pp. 317–330. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30108-7_27

    Chapter  Google Scholar 

  6. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649 (2013)

    Google Scholar 

  7. Kaplan, J., et al.: Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020)

  8. Liu, S., et al.: The unreasonable effectiveness of random pruning: return of the most naive baseline for sparse training. In: International Conference on Learning Representations (2022)

    Google Scholar 

  9. Lee, N., Ajanthan, T., Torr, P.: Snip: single-shot network pruning based on connection sensitivity. In: International Conference on Learning Representations (2019)

    Google Scholar 

  10. Wang, C., Zhang, G., Grosse, R.: Picking winning tickets before training by preserving gradient flow. In: International Conference on Learning Representations (2020)

    Google Scholar 

  11. Tanaka, H., Kunin, D., Yamins, D.L., Ganguli, S.: Pruning neural networks without any data by iteratively conserving synaptic flow. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 6377–6389. Curran Associates, Inc. (2020)

    Google Scholar 

  12. Alizadeh, M., et al.: Prospect pruning: finding trainable weights at initialization using meta-gradients. In: International Conference on Learning Representations (2022)

    Google Scholar 

  13. Frankle, J., Dziugaite, G.K., Roy, D., Carbin, M.: Pruning neural networks at initialization: Why are we missing the mark? In: International Conference on Learning Representations (2021)

    Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  16. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Tech. Rep. 0, University of Toronto, Toronto, Ontario (2009)

    Google Scholar 

  17. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. In: International Conference on Learning Representations (2017)

    Google Scholar 

  18. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  19. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015)

    Google Scholar 

  20. Le Cun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Proceedings of the 2nd International Conference on Neural Information Processing Systems, NIPS 1989, pp. 598–605. MIT Press, Cambridge (1989)

    Google Scholar 

  21. Wang, H., Qin, C., Bai, Y., Zhang, Y., Fu, Y.: Recent advances on neural network pruning at initialization. In: Raedt, L.D. (ed.) Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 5638–5645. International Joint Conferences on Artificial Intelligence Organization (2022)

    Google Scholar 

  22. Lee, N., Ajanthan, T., Gould, S., Torr, P.H.S.: A signal propagation perspective for pruning neural networks at initialization. In: International Conference on Learning Representations (2020)

    Google Scholar 

  23. Mallya, A., Lazebnik, S.: Packnet: adding multiple tasks to a single network by iterative pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  24. Wortsman, M., et al.: Supermasks in superposition. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 15173–15184. Curran Associates, Inc. (2020)

    Google Scholar 

  25. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  26. Chen, T., et al.: The lottery ticket hypothesis for pre-trained bert networks. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 15834–15846. Curran Associates, Inc. (2020)

    Google Scholar 

  27. Frankle, J., Schwab, D.J., Morcos, A.S.: The early phase of neural network training. In: International Conference on Learning Representations (2020)

    Google Scholar 

  28. Evci, U., Ioannou, Y., Keskin, C., Dauphin, Y.: Gradient flow in sparse neural networks and how lottery tickets win. In: Proceedings of the AAAI Conference on Artificial Intelligence 36(6), 6577–6586 (2022)

    Google Scholar 

  29. Su, J., et al.: Sanity-checking pruning methods: Random tickets can win the jackpot. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 20390–20401. Curran Associates, Inc. (2020)

    Google Scholar 

  30. Liu, N., et al.: Lottery ticket implies accuracy degradation, is it a desirable phenomenon. CoRR (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by National Natural Science Foundation of China (No. 61831005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, X. et al. (2024). PTCP: Alleviate Layer Collapse in Pruning at Initialization via Parameter Threshold Compensation and Preservation. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1965. Springer, Singapore. https://doi.org/10.1007/978-981-99-8145-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8145-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8144-1

  • Online ISBN: 978-981-99-8145-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics