Skip to main content

Hierarchical Attribute-Based Encryption Scheme Supporting Computing Outsourcing and Time-Limited Access in Edge Computing

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1965))

Included in the following conference series:

  • 395 Accesses

Abstract

With the rapid increase of user data and traffic, the traditional attribute encryption scheme based on the central cloud will cause the bottleneck of computing performance. And user's access privilege and ciphertext in the existing scheme is not limited by the time duration and the number of attempts, which could be brute force attack. We propose a solution to support computing outsourcing and time-limited access in edge computing. Edge nodes can shorten data transmission distances and eliminate latency issues. To solve the central cloud performance problem during encryption and decryption, massive and complex computing is considered outsource to edge nodes. And set valid time for the ciphertext and the user key, which avoid their permanent validity and significantly improve data security. In addition, all attributes are divided into attribute trees. According to the hierarchical relationship between attributes, we judge the user's access privilege. Finally, we give security proof, performance cost, functional comparison of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amit, S., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (eds.) Advances in Cryptology – EUROCRYPT 2005. EUROCRYPT 2005. LNCS, vol. 3494. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/11426639_27

  2. Goyal, V., Pandey, O., Sahai, A., et al.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM conference on Computer and communications security. ACM 2006, 89–98 (2006)

    Google Scholar 

  3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer Society (2007)

    Google Scholar 

  4. Li, J., Wang, Q., Wang, C., et al.: Enhancing attribute-based encryption with attribute hierarchy. Mobile Networks Appl. 16(5), 553–561 (2011)

    Article  Google Scholar 

  5. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_28

  6. Huang, Q., Yang, Y., Shen, M.: Secure and efficient data collaboration with hierarchical attribute-based encryption in cloud computing. Futur. Gener. Comput. Syst. 72, 239–249 (2017)

    Article  Google Scholar 

  7. Leng, Q.S., Luo, W.P.: Attribute-based encryption with outsourced encryption. Commun. Technol. 54(9), 2242–2246 (2021)

    Google Scholar 

  8. Qi, F., Li, K., Tang, Z.: A Multi-authority attribute-based encryption scheme with attribute hierarchy. In: 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications, vol. 2017, pp. 607–613. Guangzhou, China (2017)

    Google Scholar 

  9. Peng, H., Ling, J., Qin, S., et al.: Attribute-based encryption scheme for edge computing. Comput. Eng. 47(1), 37–43 (2021)

    Google Scholar 

  10. Huang, K.: Multi-authority attribute-based encryption for resource-constrained users in edge computing. In: 2019 International Conference on Information Technology and Computer Application (ITCA), pp. 323–326, Guangzhou, China (2019)

    Google Scholar 

  11. Wang, Z., Sun, X.: A compact attribute-based encryption scheme supporting computi outsourcing in fog computing. Comput. Eng. Sci. 44(03), 427–435 (2022)

    Google Scholar 

  12. Y. Li, Z. Dong, K. Sha, C. Jiang, J. Wan and Y. Wang.: TMO: time domain outsourcing attribute-based encryption scheme for data acquisition in edge computing. IEEE Access 7, 40240–40257 (2019)

    Google Scholar 

  13. Ning, J.T., Huang, X.Y., et al.: Tracing malicious lnsider in attribute-based cloud data sharing. Chin. J. Comput. 45(07), 1431–1445 (2022)

    Google Scholar 

  14. Xu, M., Fang, M.: Cloud outsourcing support aging access attributes of anonymous encryption scheme. J. Chin. Comput. Syst. 39(02), 225–229 (2018)

    Google Scholar 

  15. Wang, Z., Wang, J.: Hierarchical ciphertext-policy attribute-based encryption scheme. J. Chin. Comput. Syst. 37(6), 1263–1267 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, K., Li, C., Shen, J. (2024). Hierarchical Attribute-Based Encryption Scheme Supporting Computing Outsourcing and Time-Limited Access in Edge Computing. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1965. Springer, Singapore. https://doi.org/10.1007/978-981-99-8145-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8145-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8144-1

  • Online ISBN: 978-981-99-8145-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics