Skip to main content

An Ontology for Industrial Intelligent Model Library and Its Distributed Computing Application

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1965))

Included in the following conference series:

  • 382 Accesses

Abstract

In the context of Industry 4.0, the paradigm of manufacturing has shifted from autonomous to intelligent by integrating advanced communication technologies. However, to enable manufacturers to respond quickly and accurately to the complex environment of manufacturing, knowledge of manufacturing required suitable representation. Ontology is a proper solution for knowledge representation, which is used to describe concepts and attributes in a specified domain. This paper proposes an ontology-based industrial model and significantly improves the interoperability of the models. Firstly, we conceptualize the attribute of the industrial models by providing concept and their properties in the schema layer of the ontology. Then, according to the data collected from the manufacturing system, several instances are created and stored in the data layer. In addition, we present a prototype distributed computing application. The result suggests that the ontology can optimize the management of industrial models and achieve interoperability between models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei, H.L., Mukherjee, T., Zhang, W., Zuback, J.S., Knapp, G.L., De, A., DebRoy, T.: Mechanistic models for additive manufacturing of metallic components. Progress Mater. Sci. 116, 100703(2021)

    Google Scholar 

  2. Ghahramani, M., Qiao, Y., Zhou, M.C., d O’Hagan, A., Sweeney, J.: AI-based modeling and data-driven evaluation for smart manufacturing processes. IEEE/CAA J. Automatica Sinica 7(4), 1026–1037(2020)

    Google Scholar 

  3. Noy, F.N., McGuinness, D.L.: Ontology development 101: a guide to creating your first ontology. Stanford knowledge systems laboratory technical report KSL-01-05 (2001)

    Google Scholar 

  4. Järvenpää, E., Siltala, N., Hylli, O., Lanz, M.: The development of an ontology for describing the capabilities of manufacturing resources. J. Intell. Manuf. 30(2), 959–978 (2019)

    Google Scholar 

  5. Dinar, M., Rosen, D.W.: A design for additive manufacturing ontology. J. Comput. Inf. Sci. Eng. 17(2) (2017)

    Google Scholar 

  6. Saha, S., Li, W.D., Usman, Z., Shah, N.: Core manufacturing ontology to model manufacturing operations and sequencing knowledge. Service Oriented Computing and Applications, 1–13 (2023)

    Google Scholar 

  7. Sanfilippo, E.M., Belkadi, F., Bernard, A.: Ontology-based knowledge representation for additive manufacturing. Comput. Ind. 109, 182–194 (2019)

    Google Scholar 

  8. Lemaignan, S., Siadat, A., Dantan, J.Y., Semenenko, A.: MASON: a proposal for an ontology of manufacturing domain. In: IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS’06), pp. 195–200 (2006)

    Google Scholar 

  9. Elkan, C., Greiner, R.: Building large knowledge-based systems: representation and inference in the cyc project: DB Lenat and RV Guha. Artificial Intelligence (1993)

    Google Scholar 

  10. Mayer, R.J.: Information integration for concurrent engineering (IICE). In: IDEF3 Process description capture method report (1995)

    Google Scholar 

  11. López, M.F., Gómez, P.A., Sierra, J.P., Sierra, A.P.: Building a chemical ontology using methontology and the ontology design environment. IEEE Intell. Syst. Appl. 14, 37–46 (1999)

    Google Scholar 

  12. Farazi, F.: OntoKin: an ontology for chemical kinetic reaction mechanisms. J. Chem. Inf. Model. 60(1), 108–120 (2019)

    Google Scholar 

  13. Tim, B.L., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)

    Google Scholar 

  14. Bitsch, G., Senjic, P., Askin, J.: Dynamic adaption in cyber-physical production systems based on ontologies. Procedia Comput. Sci. 200, 577–584 (2022)

    Google Scholar 

  15. Zhao, Y.Y., Liu, Q., Xu, W.J., Yuan, H.Q., Lou, P.: An ontology self-learning approach for CNC machine capability information integration and representation in cloud manufacturing. J. Ind. Inf. Integr. 25, 100300 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, C. et al. (2024). An Ontology for Industrial Intelligent Model Library and Its Distributed Computing Application. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1965. Springer, Singapore. https://doi.org/10.1007/978-981-99-8145-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8145-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8144-1

  • Online ISBN: 978-981-99-8145-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics