Skip to main content

Efficient Prompt Tuning for Vision and Language Models

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

Recently, large-scale pre-trained visual language models have demonstrated excellent performance in many downstream tasks. A more efficient adaptation method for different downstream tasks is prompt tuning, which fixes the parameters of the visual language model and adjusts only prompt parameters in the process of adapting the downstream tasks, using the knowledge learned by the visual language model during pre-training to solve the problems in the down-stream tasks. However, the loss of the downstream task and the original loss of the visual language model are not exactly same during model training. For example, CLIP uses contrast learning loss to train the model, while the downstream image classification task uses the cross-entropy loss commonly used in classification problems. Different loss has different guiding effects on the task. The trend of the accuracy of the visual language model task during training is also different from that with the downstream task. The choice of an appropriate loss function and a reasonable prompt tuning method have a great impact on the performance of the model. Therefore, we pro-pose a more efficient method of prompt tuning for CLIP, experiments on 11 datasets demonstrate that our method achieves better performance and faster convergence in the downstream task.

B. Li, F. Li and Q. Fan — These authors contributed equally to this article and should be considered as co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning. PMLR (2021)

    Google Scholar 

  2. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning. PMLR (2021)

    Google Scholar 

  3. Liu, P., et al.: Pre-train, prompt, and predict: a survey of prompting methods in NLP. ACM Comput. Surv. 55(9), 1–35 (2023)

    Article  Google Scholar 

  4. Jia, M., et al.: Visual prompt tuning. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, 23–27 October 2022, Proceedings, Part XXXIII, pp. 709–727. Springer, Cham (2022)

    Google Scholar 

  5. Zhou, K., et al.: Learning to prompt for vision-language models. Int. J. Comput. Vision 130(9), 2337–2348 (2022)

    Article  Google Scholar 

  6. Zang, Y., et al.: Unified vision and language prompt learning. arXiv preprint arXiv:2210.07225 (2022)

  7. Shin, T., et al.: Autoprompt: eliciting knowledge from language models. arXiv preprint arXiv:2010.15980 (2020)

  8. Qin, G., Eisner, J.: Learning how to ask: Querying LMs with soft prompts. arXiv preprint arXiv:2104.06599 (2021)

  9. Tan, H., Bansal, M.: Lxmert: learning cross-modality encoder representations from transformers. arXiv preprint arXiv:1908.07490 (2019)

  10. Li, X., et al.: Oscar: object-semantics aligned pre-training for vision-language tasks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 121–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_8

    Chapter  Google Scholar 

  11. Lu, J., et al.: Vilbert: pretraining visiolinguistic representations for vision-language tasks. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  12. Zhou, K., et al.: Conditional prompt learning for vision-language models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16816–16825 (2022)

    Google Scholar 

  13. Sun, X., et al.: Dualcoop: fast adaptation to multi-label recognition with limited annotations. arXiv preprint arXiv:2206.09541 (2022)

  14. Xing, Y., et al.: Class-aware visual prompt tuning for vision-language pre-trained model. arXiv preprint arXiv:2208.08340 (2022)

  15. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE (2016)

    Google Scholar 

  16. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  17. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  18. Farhat, N.: Optoelectronic neural networks and learning machines. IEEE Circuits Devices Mag. 5(5), 32–41 (1989)

    Article  Google Scholar 

  19. Li, Y., et al.: Supervision exists everywhere: a data efficient contrastive language-image pre-training paradigm. arXiv preprint arXiv:2110.05208 (2021)

  20. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  21. Deng, J., et al.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  22. Fei-Fei, L., et al.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: 2004 Conference on Computer Vision and Pattern Recognition Workshop, p. 178. IEEE (2004)

    Google Scholar 

  23. Parkhi, O.M., et al.: Cats and dogs. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3498–3505. IEEE (2012)

    Google Scholar 

  24. Krause, J., et al.: 3D object representations for fine-grained categorization. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 554–561 (2013)

    Google Scholar 

  25. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729. IEEE (2008)

    Google Scholar 

  26. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  27. Maji, S., et al.: Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)

  28. Xiao, J., et al.: Sun database: large-scale scene recognition from abbey to zoo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3485–3492. IEEE (2010)

    Google Scholar 

  29. Soomro, K., et al.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  30. Cimpoi, M., et al.: Describing textures in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3606–3613 (2014)

    Google Scholar 

  31. Helber, P., et al.: Eurosat: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 12(7), 2217–2226 (2019)

    Google Scholar 

  32. Li, S., Deng, W.: Blended emotion in-the-wild: Multi-label facial expression recognition using crowdsourced annotations and deep locality feature learning. Int. J. Computer Vision 127(6–7), 884–906 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, B. et al. (2024). Efficient Prompt Tuning for Vision and Language Models. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1965. Springer, Singapore. https://doi.org/10.1007/978-981-99-8145-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8145-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8144-1

  • Online ISBN: 978-981-99-8145-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics