Skip to main content

Instance-Aware and Semantic-Guided Prompt for Few-Shot Learning in Large Language Models

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1966))

Included in the following conference series:

  • 796 Accesses

Abstract

The effectiveness of large language models (LLMs) and instruction learning has been demonstrated in different pre-trained language models (such as ChatGPT). However, current prompt learning methods usually use a unified template for the same tasks, and the template is difficult to capture significant information from different instances. To integrate the semantic attention dynamically on the instance level, We propose ISPrompt, an instance-semantic-aware prompt learning model. Specifically, the instance-driven prompt generated from the semantic dependency tree is introduced. Then, the proposed model would select a suitable semantic prompt from the prompt selection pool to motivate the prompt-based fine-tuning process. Our results show that the proposed model achieves state-of-the-art performance on few-shot learning tasks, which proves that ISPrompt integrating the instance semantics dynamically could assume as a better knowledge-mining tool for PLMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://nlp.stanford.edu/software/tagger.shtml.

References

  1. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)

    Google Scholar 

  2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv e-prints arXiv:1810.04805 (2018)

  3. Gao, T., Fisch, A., Chen, D.: Making pre-trained language models better few-shot learners. arXiv preprint arXiv:2012.15723 (2020)

  4. Han, X., Zhao, W., Ding, N., Liu, Z., Sun, M.: PTR: prompt tuning with rules for text classification. arXiv preprint arXiv:2105.11259 (2021)

  5. Hu, S., et al.: Knowledgeable prompt-tuning: Incorporating knowledge into prompt verbalizer for text classification. arXiv preprint arXiv:2108.02035 (2021)

  6. Jiang, Z., Xu, F.F., Araki, J., Neubig, G.: How can we know what language models know? Trans. Assoc. Comput. Linguist. 8, 423–438 (2020)

    Article  Google Scholar 

  7. Kavumba, P., Takahashi, R., Oda, Y.: Are prompt-based models clueless? In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (vol. 1: Long Papers), pp. 2333–2352 (2022)

    Google Scholar 

  8. Kocoń, J., et al.: ChatGPT: jack of all trades, master of none. arXiv preprint arXiv:2302.10724 (2023)

  9. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3045–3059 (2021)

    Google Scholar 

  10. Li, X.L., Liang, P.: Prefix-tuning: optimizing continuous prompts for generation. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (vol. 1: Long Papers), pp. 4582–4597. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.acl-long.353. https://aclanthology.org/2021.acl-long.353

  11. Lin, Y., Tan, Y.C., Frank, R.: Open sesame: getting inside BERT’s linguistic knowledge (2019)

    Google Scholar 

  12. Liu, X., Ji, K., Fu, Y., Du, Z., Yang, Z., Tang, J.: P-Tuning v2: prompt tuning can be comparable to fine-tuning universally across scales and tasks (2021)

    Google Scholar 

  13. Liu, X., et al.: GPT understands, too. arXiv preprint arXiv:2103.10385 (2021)

  14. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. ArXiv abs/1907.11692 (2019)

    Google Scholar 

  15. Mahabadi, R.K., et al.: Perfect: prompt-free and efficient few-shot learning with language models. arXiv preprint arXiv:2204.01172 (2022)

  16. OpenAI: Gpt-4 technical report (2023)

    Google Scholar 

  17. Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., Huang, X.: Pre-trained models for natural language processing: a survey. Sci. Chin. Technol. Sci. 63(10), 1872–1897 (2020). https://doi.org/10.1007/s11431-020-1647-3

  18. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine comprehension of text. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392 (2016)

    Google Scholar 

  19. Schick, T., Schütze, H.: Exploiting cloze-questions for few-shot text classification and natural language inference. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 255–269. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.eacl-main.20. https://aclanthology.org/2021.eacl-main.20

  20. Shin, T., Razeghi, Y., Logan IV, R.L., Wallace, E., Singh, S.: AutoPrompt: eliciting knowledge from language models with automatically generated prompts. arXiv preprint arXiv:2010.15980 (2020)

  21. Sumers, T., Hawkins, R., Ho, M.K., Griffiths, T., Hadfield-Menell, D.: How to talk so AI will learn: instructions, descriptions, and autonomy. In: Advances in Neural Information Processing Systems, vol. 35, pp. 34762–34775 (2022)

    Google Scholar 

  22. Voorhees, E.M., Tice, D.M.: Building a question answering test collection. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 200–207 (2000)

    Google Scholar 

  23. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.: GLUE: a multi-task benchmark and analysis platform for natural language understanding. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353–355 (2018)

    Google Scholar 

  24. Wang, J., et al.: Towards unified prompt tuning for few-shot text classification. arXiv preprint arXiv:2205.05313 (2022)

  25. Wang, Z., et al.: Learning to prompt for continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149 (2022)

    Google Scholar 

  26. Webson, A., Pavlick, E.: Do prompt-based models really understand the meaning of their prompts? arxiv abs/2109.01247 (2021)

    Google Scholar 

  27. Wei, J., et al.: Emergent abilities of large language models. arXiv preprint arXiv:2206.07682 (2022)

  28. Wei, J., et al.: Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903 (2022)

  29. Zhong, W., et al.: Improving task generalization via unified schema prompt. arXiv preprint arXiv:2208.03229 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Hu or Heyan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weng, J., Li, D., Deng, Y., Zhang, J., Hu, Y., Huang, H. (2024). Instance-Aware and Semantic-Guided Prompt for Few-Shot Learning in Large Language Models. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1966. Springer, Singapore. https://doi.org/10.1007/978-981-99-8148-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8148-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8147-2

  • Online ISBN: 978-981-99-8148-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics