Skip to main content

Causal-Inspired Influence Maximization in Hypergraphs Under Temporal Constraints

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1967))

Included in the following conference series:

  • 848 Accesses

Abstract

Influence Maximization is a significant problem aimed to find a set of seed nodes to maximize the spread of given events in social networks. Previous studies are contributing to the efficiency and online dynamics of basic IM on classical graph structure. However, they lack an adequate consideration of individual and group behavior on propagation probability. This can be attributed to inadequate attention given to node Individual Treatment Effects (ITE), which significantly impacts the probability of propagation by dividing the sensitive attributes of nodes. Additionally, current research lacks exploration of temporal constraints in influence spreading process under higher order interference on hypergraphs. To fill these two gaps, we introduce two sets of basic assumptions about the impact of ITE on the propagation process and develop a new diffusion model called the Latency Aware Contact Process on Causal Independent Cascading (LT-CPCIC) under time constraints on hypergraphs. We further design Causal-Inspired Cost-Effective Balanced Selection algorithm (CICEB) for the proposed models. CICEB first recovers node ITE from observational data and applies three types of debiasing strategies, namely DebiasFormer, DebiasCur and DebiasInteg, to weaken the correlation between the propagation effects of different pre- and post-nodes. Finally, we compare CICEB with traditional methods on two real-world datasets and show that it achieves superior effectiveness and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker, R., D’angelo, G., Ghobadi, S., Gilbert, H.: Fairness in influence maximization through randomization. J. Artif. Intell. Res. 73, 1251–1283 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benson, A.R., Abebe, R., Schaub, M.T., Jadbabaie, A., Kleinberg, J.: Simplicial closure and higher-order link prediction. Proc. Natl. Acad. Sci. (2018)

    Google Scholar 

  3. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66 (2001)

    Google Scholar 

  4. Erkol, Åž, Mazzilli, D., Radicchi, F.: Effective submodularity of influence maximization on temporal networks. Phys. Rev. E 106(3), 034301 (2022)

    Article  MathSciNet  Google Scholar 

  5. He, Q., et al.: CAOM: a community-based approach to tackle opinion maximization for social networks. Inf. Sci. 513, 252–269 (2020)

    Article  MathSciNet  Google Scholar 

  6. Hernan, M.A., Robins, J.M.: Causal Inference: What If. Chapman Hill/CRC, Boca Raton (2020)

    Google Scholar 

  7. Huang, H., Shen, H., Meng, Z., Chang, H., He, H.: Community-based influence maximization for viral marketing. Appl. Intell. 49, 2137–2150 (2019)

    Article  Google Scholar 

  8. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

    Google Scholar 

  9. Kilbertus, N., Rojas Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., Schölkopf, B.: Avoiding discrimination through causal reasoning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  10. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 420–429 (2007)

    Google Scholar 

  11. Li, S., Kong, F., Tang, K., Li, Q., Chen, W.: Online influence maximization under linear threshold model. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1192–1204 (2020)

    Google Scholar 

  12. Ling, C., et al.: Deep graph representation learning and optimization for influence maximization. In: International Conference on Machine Learning, pp. 21350–21361. PMLR (2023)

    Google Scholar 

  13. Liu, B., Cong, G., Xu, D., Zeng, Y.: Time constrained influence maximization in social networks. In: 2012 IEEE 12th International Conference on Data Mining, pp. 439–448. IEEE (2012)

    Google Scholar 

  14. Ma, J., Wan, M., Yang, L., Li, J., Hecht, B., Teevan, J.: Learning causal effects on hypergraphs. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1202–1212 (2022)

    Google Scholar 

  15. Ma, L., et al.: Influence maximization in complex networks by using evolutionary deep reinforcement learning. IEEE Trans. Emerg. Top. Comput. Intell. (2022)

    Google Scholar 

  16. Panagopoulos, G., Malliaros, F.D., Vazirgianis, M.: Influence maximization using influence and susceptibility embeddings. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 14, pp. 511–521 (2020)

    Google Scholar 

  17. Pei, S., Makse, H.A.: Spreading dynamics in complex networks. J. Stat. Mech: Theory Exp. 2013(12), P12002 (2013)

    Article  MATH  Google Scholar 

  18. Schölkopf, B., et al.: Toward causal representation learning. Proc. IEEE 109(5), 612–634 (2021)

    Article  Google Scholar 

  19. Suo, Q., Guo, J.L., Shen, A.Z.: Information spreading dynamics in hypernetworks. Phys. A 495, 475–487 (2018)

    Article  MATH  Google Scholar 

  20. Tang, S.: When social advertising meets viral marketing: sequencing social advertisements for influence maximization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  21. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1539–1554 (2015)

    Google Scholar 

  22. Zhu, J., Zhu, J., Ghosh, S., Wu, W., Yuan, J.: Social influence maximization in hypergraph in social networks. IEEE Trans. Netw. Sci. Eng. 6(4), 801–811 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, X., Qiu, J., Zhang, Z., Li, J. (2024). Causal-Inspired Influence Maximization in Hypergraphs Under Temporal Constraints. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1967. Springer, Singapore. https://doi.org/10.1007/978-981-99-8178-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8178-6_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8177-9

  • Online ISBN: 978-981-99-8178-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics