Skip to main content

Detection of Anomalies and Explanation in Cybersecurity

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1967))

Included in the following conference series:

  • 425 Accesses

Abstract

Histogram-based anomaly detectors have gained significant attention and application in the field of intrusion detection because of their high efficiency in identifying anomalous patterns. However, they fail to explain why a given data point is flagged as an anomaly. Outlying Aspect Mining (OAM) aims to detect aspects (a.k.a subspaces) where a given anomaly significantly differs from others. In this paper, we have proposed a simple but effective and efficient histogram-based solution - HMass. In addition to detecting anomalies, HMass provides explanations on why the points are anomalous. The effectiveness and efficiency of HMass are evaluated using comparative analysis on seven cyber security datasets, covering the tasks of anomaly detection and outlying aspect mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The synthetic datasets are from Keller et al. (2012) [6]. Available at https://www.ipd.kit.edu/~muellere/HiCS/.

  2. 2.

    Due to space constraints, we only reported results for three queries.

  3. 3.

    Due to space constraints, we only reported results for three queries.

References

  1. Aryal, S., Ting, K.M., Haffari, G.: Revisiting attribute independence assumption in probabilistic unsupervised anomaly detection (2016)

    Google Scholar 

  2. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LoF: identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000). https://doi.org/10.1145/335191.335388

    Article  Google Scholar 

  3. Duan, L., Tang, G., Pei, J., Bailey, J., Campbell, A., Tang, C.: Mining outlying aspects on numeric data. Data Min. Knowl. Disc. 29(5), 1116–1151 (2015). https://doi.org/10.1007/s10618-014-0398-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Goldstein, M., Dengel, A.: Histogram-based outlier score (hbos): a fast unsupervised anomaly detection algorithm. In: KI-2012: Poster and Demo Track, pp. 59–63 (2012)

    Google Scholar 

  5. Hand, D.J., Till, R.J.: A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001)

    Article  MATH  Google Scholar 

  6. Keller, F., Muller, E., Bohm, K.: HICS: high contrast subspaces for density-based outlier ranking. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1037–1048 (2012). https://doi.org/10.1109/ICDE.2012.88

  7. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008). https://doi.org/10.1109/ICDM.2008.17

  8. Moustafa, N.: A new distributed architecture for evaluating AI-based security systems at the edge: Network ton_iot datasets. Sustain. Cities Soc. 72, 102994 (2021)

    Google Scholar 

  9. Moustafa, N., Ahmed, M., Ahmed, S.: Data analytics-enabled intrusion detection: evaluations of ton_iot linux datasets. In: 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 727–735 (2020). https://doi.org/10.1109/TrustCom50675.2020.00100

  10. Moustafa, N., Keshky, M., Debiez, E., Janicke, H.: Federated ton_iot windows datasets for evaluating AI-based security applications. In: 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 848–855 (2020). https://doi.org/10.1109/TrustCom50675.2020.00114

  11. Moustafa, N., Slay, J.: Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS), pp. 1–6 (2015). https://doi.org/10.1109/MilCIS.2015.7348942

  12. Samariya, D., Aryal, S., Ting, K.M., Ma, J.: A new effective and efficient measure for outlying aspect mining. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2020. LNCS, vol. 12343, pp. 463–474. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62008-0_32

    Chapter  Google Scholar 

  13. Samariya, D., Ma, J.: Mining outlying aspects on healthcare data. In: Siuly, S., Wang, H., Chen, L., Guo, Y., Xing, C. (eds.) HIS 2021. LNCS, vol. 13079, pp. 160–170. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90885-0_15

    Chapter  Google Scholar 

  14. Samariya, D., Ma, J.: A new dimensionality-unbiased score for efficient and effective outlying aspect mining. In: Data Science and Engineering, pp. 1–16 (2022)

    Google Scholar 

  15. Samariya, D., Ma, J., Aryal, S.: A comprehensive survey on outlying aspect mining methods. arXiv preprint arXiv:2005.02637 (2020)

  16. Samariya, D., Ma, J., Aryal, S.: sGrid++: revising simple grid based density estimator for mining outlying aspect. In: Chbeir, R., Huang, H., Silvestri, F., Manolopoulos, Y., Zhang, Y. (eds.) WISE 2022. LNCS, vol. 13724, pp. 194–208. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20891-1_15

    Chapter  Google Scholar 

  17. Samariya, D., Ma, J., Aryal, S., Zhao, X.: Detection and explanation of anomalies in healthcare data. Health Inf. Sci. Syst. 11(1), 20 (2023)

    Article  Google Scholar 

  18. Vinh, N.X., Chan, J., Romano, S., Bailey, J., Leckie, C., Ramamohanarao, K., Pei, J.: Discovering outlying aspects in large datasets. Data Min. Knowl. Disc. 30(6), 1520–1555 (2016). https://doi.org/10.1007/s10618-016-0453-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Wells, J.R., Ting, K.M.: A new simple and efficient density estimator that enables fast systematic search. Pattern Recogn. Lett. 122, 92–98 (2019)

    Article  Google Scholar 

  20. Zhao, Y., Nasrullah, Z., Li, Z.: PYOD: a python toolbox for scalable outlier detection. J. Mach. Learn. Res. 20(96), 1–7 (2019). https://jmlr.org/papers/v20/19-011.html

Download references

Acknowledgments

This work is supported by Federation University Research Priority Area (RPA) scholarship, awarded to Durgesh Samariya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durgesh Samariya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samariya, D., Ma, J., Aryal, S., Zhao, X. (2024). Detection of Anomalies and Explanation in Cybersecurity. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1967. Springer, Singapore. https://doi.org/10.1007/978-981-99-8178-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8178-6_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8177-9

  • Online ISBN: 978-981-99-8178-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics