Skip to main content

Topic Modeling for Short Texts via Adaptive P\(\acute{o}\)lya Urn Dirichlet Multinomial Mixture

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1968))

Included in the following conference series:

  • 453 Accesses

Abstract

Inferring coherent and diverse latent topics from short texts is crucial in topic modeling. Existing approaches leverage the Generalized P\(\acute{o}\)lya Urn (GPU) model to incorporate external knowledge and improve topic modeling performance. While the GPU scheme successfully promotes similarity among words within the same topic, it has two major limitations. Firstly, it assumes that similar words contribute equally to the same topic, disregarding the distinctiveness of different words. Secondly, it assumes that a specific word should have the same promotion across all topics, overlooking the variations in word importance across different topics. To address these limitations, we propose a novel Adaptive P\(\acute{o}\)lya Urn (APU) scheme, which builds topic-word correlation according to the external and local knowledge, and the Adaptive P\(\acute{o}\)lya Urn Dirichlet Multinomial Mixture (APU-DMM) model that uses the topic-word correlation as an adaptive weight to promote topic inference process. Our extensive experimental study on three benchmark datasets shows the superiority of our model in terms of topic coherence and topic diversity over the eight baseline methods (The code is available at https://github.com/ddwangr/APUDMM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/qiang2100/STTM.

  2. 2.

    https://github.com/PasaLab/TSSE.

  3. 3.

    https://github.com/hjyyyyy/MultiKEDMM.

  4. 4.

    https://github.com/tshi04/SeaNMF.

  5. 5.

    https://github.com/overlook2021/PYSTM.

  6. 6.

    https://code.google.com/p/word2vec.

  7. 7.

    https://github.com/jhlau/topic_interpretability.

  8. 8.

    http://deepdive.stanford.edu/opendata/.

References

  1. Bicalho, P.V., Pita, M., Pedrosa, G., Lacerda, A., Pappa, G.L.: A general framework to expand short text for topic modeling. Inf. Sci. 393, 66–81 (2017)

    Article  Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    Google Scholar 

  3. Burkhardt, S., Kramer, S.: Decoupling sparsity and smoothness in the Dirichlet variational autoencoder topic model. JMLR 20, 131:1–131:27 (2019)

    Google Scholar 

  4. Chen, J., Wang, R., He, J., Li, M.J.: Encouraging sparsity in neural topic modeling with non-mean-field inference. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds.) ECML PKDD 2023. LNCS, vol. 14172, pp. 142–158. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43421-1_9

    Chapter  Google Scholar 

  5. Chen, Z., Liu, B.: Mining topics in documents: standing on the shoulders of big data. In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 1116–1125. ACM (2014)

    Google Scholar 

  6. Cheng, X., Yan, X., Lan, Y., Guo, J.: BTM: topic modeling over short texts. IEEE Trans. Knowl. Data Eng. 26(12), 2928–2941 (2014)

    Article  Google Scholar 

  7. Dieng, A.B., Ruiz, F.J.R., Blei, D.M.: Topic modeling in embedding spaces. Trans. Assoc. Comput. Linguist. 8, 439–453 (2020)

    Article  Google Scholar 

  8. Guo, Y., Huang, Y., Ding, Y., Qi, S., Wang, X., Liao, Q.: GPU-BTM: a topic model for short text using auxiliary information. In: 5th IEEE International Conference on Data Science in Cyberspace, DSC, pp. 198–205. IEEE (2020)

    Google Scholar 

  9. He, J., Chen, J., Li, M.J.: Multi-knowledge embeddings enhanced topic modeling for short texts. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) ICONIP 2022. LNCS, vol. 13625, pp. 521–532. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-30111-7_44

    Chapter  Google Scholar 

  10. Li, C., Duan, Y., Wang, H., Zhang, Z., Sun, A., Ma, Z.: Enhancing topic modeling for short texts with auxiliary word embeddings. ACM Trans. Inf. Syst. 36(2), 11:1–11:30 (2017)

    Google Scholar 

  11. Li, C., Wang, H., Zhang, Z., Sun, A., Ma, Z.: Topic modeling for short texts with auxiliary word embeddings. In: Proceedings of the 39th International ACM SIGIR, pp. 165–174 (2016)

    Google Scholar 

  12. Mai, C., Qiu, X., Luo, K., Chen, M., Zhao, B., Huang, Y.: TSSE-DMM: topic modeling for short texts based on topic subdivision and semantic enhancement. In: Advances in Knowledge Discovery and Data Mining - 25th Pacific-Asia Conference, PAKDD, vol. 12713, pp. 640–651 (2021)

    Google Scholar 

  13. Mimno, D.M., Wallach, H.M., Talley, E.M., Leenders, M., McCallum, A.: Optimizing semantic coherence in topic models. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, EMNLP. pp. 262–272. ACL (2011)

    Google Scholar 

  14. Nan, F., Ding, R., Nallapati, R., Xiang, B.: Topic modeling with Wasserstein autoencoders. In: Proceedings of the 57th Conference of the Association for Computational Linguistics, pp. 6345–6381. ACL (2019)

    Google Scholar 

  15. Newman, D., Lau, J.H., Grieser, K., Baldwin, T.: Automatic evaluation of topic coherence. In: Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics, pp. 100–108 (2010)

    Google Scholar 

  16. Nguyen, D.Q., Billingsley, R., Du, L., Johnson, M.: Improving topic models with latent feature word representations. Trans. Assoc. Comput. Linguist. 3, 299–313 (2015)

    Article  Google Scholar 

  17. Nigam, K., McCallum, A., Thrun, S., Mitchell, T.M.: Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39(2/3), 103–134 (2000)

    Article  MATH  Google Scholar 

  18. Niu, Y., Zhang, H., Li, J.: A Pitman-Yor process self-aggregated topic model for short texts of social media. IEEE Access 9, 129011–129021 (2021)

    Article  Google Scholar 

  19. Phan, X.H., Nguyen, M.L., Horiguchi, S.: Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In: Proceedings of the 17th International Conference on World Wide Web, pp. 91–100. ACM (2008)

    Google Scholar 

  20. Qiang, J., Qian, Z., Li, Y., Yuan, Y., Wu, X.: Short text topic modeling techniques, applications, and performance: a survey. IEEE Trans. Knowl. Data Eng. 34(3), 1427–1445 (2022)

    Article  Google Scholar 

  21. Quan, X., Kit, C., Ge, Y., Pan, S.J.: Short and sparse text topic modeling via self-aggregation. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI, pp. 2270–2276. AAAI Press (2015)

    Google Scholar 

  22. Shahnaz, F., Berry, M.W., Pauca, V.P., Plemmons, R.J.: Document clustering using nonnegative matrix factorization. Inf. Process. Manag. 42(2), 373–386 (2006)

    Article  MATH  Google Scholar 

  23. Wang, R., Zhou, D., He, Y.: Optimising topic coherence with weighted Po’lya Urn scheme. Neurocomputing 385, 329–339 (2020)

    Article  Google Scholar 

  24. Yin, J., Wang, J.: A Dirichlet multinomial mixture model-based approach for short text clustering. In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pp. 233–242. ACM (2014)

    Google Scholar 

  25. Zubiaga, A., Ji, H.: Harnessing web page directories for large-scale classification of tweets. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 225–226 (2013)

    Google Scholar 

  26. Zuo, Y., et al. Topic modeling of short texts: a pseudo-document view. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2105–2114. ACM (2016)

    Google Scholar 

  27. Zuo, Y., Zhao, J., Xu, K.: Word network topic model: a simple but general solution for short and imbalanced texts. Knowl. Inf. Syst. 48(2), 379–398 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key R &D Program of China: Research on the applicability of port food risk traceability, early warning and emergency assessment models (No.: 2019YFC1605504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M.J. et al. (2024). Topic Modeling for Short Texts via Adaptive P\(\acute{o}\)lya Urn Dirichlet Multinomial Mixture. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1968. Springer, Singapore. https://doi.org/10.1007/978-981-99-8181-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8181-6_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8180-9

  • Online ISBN: 978-981-99-8181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics