Skip to main content

MEFaceNets: Muti-scale Efficient CNNs for Real-Time Face Recognition on Embedded Devices

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

The growing trend of applying face recognition technology on terminals and embedded devices highlights the critical need to strike a balance between recognition accuracy and real-time inference latency. In response to this challenge, we propose an efficient bottleneck named MEBottleneck, which utilizes convolution kernels of different sizes on two parallel branches to capture multi-scale features in the bottleneck, followed by a \(1 \times 1\) expansion layer to fuse multi-scale features, thereby improving the representation ability. Then, to balance the trade-off between accuracy and latency, we design a family of lightweight models with MEBottleneck, specifically tailored for face recognition and named MEFaceNets. Large kernels are used for depthwise convolutions in shallow layers, leading to notable improvements in accuracy. We evaluate the proposed models on several popular face recognition benchmarks. Our primary model achieves 99.80% face verification accuracy on LFW and exhibits excellent performance on the larger and more challenging benchmarks, including MegaFace Challenge 1, IJB-B and IJB-C. Furthermore, our proposed models have demonstrated impressive real-time performance on both the CPU and GPU of embedded devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  2. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  3. Wu, X., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)

    Article  Google Scholar 

  4. Chen, S., Liu, Y., Gao, X., Han, Z.: Mobilefacenets: Efficient cnns for accurate real-time face verification on mobile devices. In: Chinese Conference on Biometric Recognition, pp. 428–438. Springer (2018)

    Google Scholar 

  5. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)

    Google Scholar 

  6. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., Liu, W.: Cosface: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  7. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  8. Huang, Y., et al.: Curricularface: adaptive curriculum learning loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5910 (2020)

    Google Scholar 

  9. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. In: Workshop on Faces in ’Real-Life’ Images: Detection, Alignment, and Recognition. Erik Learned-Miller and Andras Ferencz and Frédéric Jurie, Marseille, France, October 2008. https://hal.inria.fr/inria-00321923

  10. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The megaface benchmark: 1 million faces for recognition at scale. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4873–4882 (2016)

    Google Scholar 

  11. Whitelam, C., et al.: Iarpa janus benchmark-b face dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 90–98 (2017)

    Google Scholar 

  12. Maze, B., Adams, J., Duncan, J.A., Kalka, N., Grother, P.: Iarpa janus benchmark - c: Face dataset and protocol, pp. 158–165 (2018)

    Google Scholar 

  13. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  14. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: ICML, vol. 2, p. 7 (2016)

    Google Scholar 

  15. Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification. IEEE Signal Process. Lett. 25(7), 926–930 (2018)

    Article  Google Scholar 

  16. Xiao, D., Li, J., Li, J., Dong, S., Lu, T.: Ihem loss: intra-class hard example mining loss for robust face recognition. IEEE Trans. Circuits Syst. Video Technol. (2022)

    Google Scholar 

  17. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  18. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  19. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  20. Tan, M., et al.: Mnasnet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)

    Google Scholar 

  21. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks, pp. 6105–6114 (2019)

    Google Scholar 

  22. Tan, M., Chen, B., Pang, R., Vasudevan, V., Le, Q.V.: Mnasnet: platform-aware neural architecture search for mobile. arXiv preprint arXiv:1807.11626 (2018)

  23. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

    Google Scholar 

  24. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  25. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  26. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415 (2016)

  27. Ding, X., Zhang, X., Han, J., Ding, G.: Scaling up your kernels to 31x31: revisiting large kernel design in CNNs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11963–11975 (2022)

    Google Scholar 

  28. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  29. Sengupta, S., Chen, J.C., Castillo, C., Patel, V.M., Chellappa, R., Jacobs, D.W.: Frontal to profile face verification in the wild. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9. IEEE (2016)

    Google Scholar 

  30. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: Agedb: the first manually collected, in-the-wild age database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 51–59 (2017)

    Google Scholar 

  31. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)

  32. Deng, J., Guo, J., Zhang, D., Deng, Y., Lu, X., Shi, S.: Lightweight face recognition challenge. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  33. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: Ms-celeb-1m: a dataset and benchmark for large-scale face recognition. In: European Conference on Computer Vision, pp. 87–102. Springer (2016)

    Google Scholar 

  34. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  35. Ng, H.W., Winkler, S.: A data-driven approach to cleaning large face datasets. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 343–347. IEEE (2014)

    Google Scholar 

  36. Xie, W., Li, S., Zisserman, A.: Comparator networks (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 62172150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Degui Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Xiao, D., Lu, T., Dong, S. (2024). MEFaceNets: Muti-scale Efficient CNNs for Real-Time Face Recognition on Embedded Devices. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1968. Springer, Singapore. https://doi.org/10.1007/978-981-99-8181-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8181-6_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8180-9

  • Online ISBN: 978-981-99-8181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics