Skip to main content

Effects of Brightness and Class-Unbalanced Dataset on CNN Model Selection and Image Classification Considering Autonomous Driving

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1969))

Included in the following conference series:

  • 336 Accesses

Abstract

In addition to an approach of combining machine learning (ML) enhanced models and convolutional neural networks (CNNs) for adaptive CNN model selection, a thorough investigation study of the effects of 1) image brightness and 2) class-balanced/-unbalanced datasets is needed, considering image classification (and object detection) for autonomous driving in significantly different daytime and nighttime settings. In this empirical study, we comprehensively investigate the effects of these two main issues on CNN performance by using the ImageNet dataset, predictive models (premodel), and CNN models. Based on the experimental results and analysis, we reveal non-trivial pitfalls (up to 58% difference in top-1 accuracy in different class-balance datasets) and opportunities in classification accuracy by changing brightness levels and class-balance ratios in datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnihotri, A., Saraf, P., Bapnad, K.R.: A convolutional neural network approach towards self-driving cars. In: 2019 IEEE 16th India Council International Conference (INDICON), pp. 1–4. IEEE (2019)

    Google Scholar 

  2. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

  3. Castillo, A., Tabik, S., Pérez, F., Olmos, R., Herrera, F.: Brightness guided preprocessing for automatic cold steel weapon detection in surveillance videos with deep learning. Neurocomputing 330, 151–161 (2019)

    Article  Google Scholar 

  4. Clark, A.: Pillow (PIL fork) documentation (2015). https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. García, V., Sánchez, J.S., Mollineda, R.A.: On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl. Based Syst. 25(1), 13–21 (2012)

    Article  Google Scholar 

  7. Haeberli, P., Voorhies, D.: Image processing by linear interpolation and extrapolation. IRIS Univ. Mag. 28, 8–9 (1994)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  9. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  10. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  11. Kandel, I., Castelli, M., Manzoni, L.: Brightness as an augmentation technique for image classification. Emerg. Sci. J. 6(4), 881–892 (2022)

    Article  Google Scholar 

  12. Kulkarni, A., Chong, D., Batarseh, F.A.: Foundations of data imbalance and solutions for a data democracy. In: Data Democracy, pp. 83–106. Elsevier (2020)

    Google Scholar 

  13. Laza, R., Pavón, R., Reboiro-Jato, M., Fdez-Riverola, F.: Evaluating the effect of unbalanced data in biomedical document classification. J. Integr. Bioinform. 8(3), 105–117 (2011)

    Article  Google Scholar 

  14. Li, Y., et al.: Overcoming classifier imbalance for long-tail object detection with balanced group Softmax. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10991–11000 (2020)

    Google Scholar 

  15. Longadge, R., Dongre, S.: Class imbalance problem in data mining review. arXiv preprint arXiv:1305.1707 (2013)

  16. Marco, V.S., Taylor, B., Wang, Z., Elkhatib, Y.: Optimizing deep learning inference on embedded systems through adaptive model selection. ACM. Trans. Embed. Comput. Syst. (TECS) 19(1), 1–28 (2020)

    Article  Google Scholar 

  17. Mountassir, A., Benbrahim, H., Berrada, I.: An empirical study to address the problem of unbalanced data sets in sentiment classification. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3298–3303. IEEE (2012)

    Google Scholar 

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  19. Rodríguez-Rodríguez, J.A., Molina-Cabello, M.A., Benítez-Rochel, R., López-Rubio, E.: The effect of noise and brightness on convolutional deep neural networks. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12666, pp. 639–654. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68780-9_49

    Chapter  Google Scholar 

  20. Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: automated testing of deep-neural-network-driven autonomous cars. In: Proceedings of the 40th International Conference on Software Engineering, pp. 303–314 (2018)

    Google Scholar 

  21. Valueva, M.V., Nagornov, N., Lyakhov, P.A., Valuev, G.V., Chervyakov, N.I.: Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Math. Comput. Simul. 177, 232–243 (2020)

    Article  MathSciNet  Google Scholar 

  22. Xu, N., Huo, C., Pan, C.: Adaptive brightness learning for active object recognition. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2162–2166. IEEE (2019)

    Google Scholar 

  23. Yarovenko, V., Park, J.G., Lee, M.H.: Re-thinking pitfalls of premodel building for adaptive CNNs model selection on imagenet. In: 2022 4th International Conference on Advances in Computer Technology, Information Science and Communications (CTISC), pp. 1–6. IEEE (2022)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Nazarbayev University (NU), Kazakhstan, under FDCRGP grant 021220FD0851.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurn-Gyu Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nazir, Z., Yarovenko, V., Park, JG. (2024). Effects of Brightness and Class-Unbalanced Dataset on CNN Model Selection and Image Classification Considering Autonomous Driving. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1969. Springer, Singapore. https://doi.org/10.1007/978-981-99-8184-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8184-7_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8183-0

  • Online ISBN: 978-981-99-8184-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics