Skip to main content

GACE: Learning Graph-Based Cross-Page Ads Embedding for Click-Through Rate Prediction

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1969))

Included in the following conference series:

Abstract

Predicting click-through rate (CTR) is the core task of many ads online recommendation systems, which helps improve user experience and increase platform revenue. In this type of recommendation system, we often encounter two main problems: the joint usage of multi-page historical advertising data and the cold start of new ads. In this paper, we proposed GACE, a graph-based cross-page ads embedding generation method. It can warm up and generate the representation embedding of cold-start and existing ads across various pages. Specifically, we carefully build linkages and a weighted undirected graph model considering semantic and page-type attributes to guide the direction of feature fusion and generation. We designed a variational auto-encoding task as pre-training module and generated embedding representations for new and old ads based on this task. The results evaluated in the public dataset AliEC from RecBole and the real-world industry dataset from Alipay show that our GACE method is significantly superior to the SOTA method. In the online A/B test, the click-through rate on three real-world pages from Alipay has increased by 3.6%, 2.13%, and 3.02%, respectively. Especially in the cold-start task, the CTR increased by 9.96%, 7.51%, and 8.97%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barkan, O., Koenigstein, N.: Item2vec: neural item embedding for collaborative filtering. arXiv (2016)

    Google Scholar 

  2. Chen, J., Sun, B., Li, H., Lu, H., Hua, X.S.: Deep ctr prediction in display advertising. In: Proceedings of the 24th ACM international conference on Multimedia, pp. 811–820 (2016)

    Google Scholar 

  3. Chen, Q., Zhao, H., Li, W., Huang, P., Ou, W.: Behavior sequence transformer for e-commerce recommendation in alibaba (2019)

    Google Scholar 

  4. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10 (2016)

    Google Scholar 

  5. Chowdhary, P.: Fundamentals of Artificial Intelligence. Fundam. Artifi. Intell. (2020)

    Google Scholar 

  6. Church, W.K.: Word2vec. Nat. Lang. Eng. 23(01), 155–162 (2017)

    Article  Google Scholar 

  7. Devika, R., Vairavasundaram, S., Mahenthar, C.S.J., Varadarajan, V., Kotecha, K.: A deep learning model based on bert and sentence transformer for semantic keyphrase extraction on big social data. IEEE Access 9, 165252–165261 (2021)

    Article  Google Scholar 

  8. Feng, Y., et al.: Deep session interest network for click-through rate prediction (2019)

    Google Scholar 

  9. Goh, K.L., Singh, A.K., Lim, K.H.: Multilayer perceptrons neural network based web spam detection application. In: IEEE China Summit & International Conference on Signal & Information Processing (2013)

    Google Scholar 

  10. Guo, H., Chen, B., Tang, R., Li, Z., He, X.: Autodis: automatic discretization for embedding numerical features in ctr prediction (2020)

    Google Scholar 

  11. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: Deepfm: a factorization-machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247 (2017)

  12. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs (2017)

    Google Scholar 

  13. Joyce, J.M.: Kullback-leibler divergence. In: International Encyclopedia Of Statistical Science, pp. 720–722. Springer (2011). https://doi.org/10.1007/978-3-642-04898-2_327

  14. Khawar, F., Poon, L., Zhang, N.L.: Learning the structure of auto-encoding recommenders. In: Proceedings of The Web Conference 2020, pp. 519–529 (2020)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  16. Lipmaa, H., Rogaway, P., Wagner, D.: Ctr-mode encryption. In: First NIST Workshop on Modes of Operation, vol. 39, Citeseer, MD (2000)

    Google Scholar 

  17. Okura, S., Tagami, Y., Ono, S., Tajima, A.: Embedding-based news recommendation for millions of users. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1933–1942 (2017)

    Google Scholar 

  18. Ouyang, W., et al.: Deep spatio-temporal neural networks for click-through rate prediction. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2078–2086 (2019)

    Google Scholar 

  19. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. ACM (2014)

    Google Scholar 

  20. Pettie, S., Ramachandran, V.: A shortest path algorithm for real-weighted undirected graphs. SIAM J. Comput. 34(6), 1398–1431 (2005)

    Article  MathSciNet  Google Scholar 

  21. Liu, Q., Lu, J., Zhang, G., Shen, T., Zhang, Z., Huang, H.: Domain-specific meta-embedding with latent semantic structures - sciencedirect. Inform. Sci. (2020)

    Google Scholar 

  22. Song, W., Shi, C., Xiao, Z., Duan, Z., Tang, J.: Autoint: automatic feature interaction learning via self-attentive neural networks. In: The 28th ACM International Conference (2019)

    Google Scholar 

  23. Soodabeh, A., Manfred, V.: A learning rate method for full-batch gradient descent. Műszaki Tudományos Közlemények 13(1), 174–177 (2020)

    Article  Google Scholar 

  24. Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., Jiang, P.: Bert4rec: sequential recommendation with bidirectional encoder representations from transformer. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM 2019, pp. 1441–1450. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3357384.3357895,https://doi.org/10.1145/3357384.3357895

  25. Tianchi: (2018). https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

  26. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  27. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions. In: Proceedings of the ADKDD 2017, pp. 1–7 (2017)

    Google Scholar 

  28. Wilson, J.T., Moriconi, R., Hutter, F., Deisenroth, M.P.: The reparameterization trick for acquisition functions. arXiv preprint arXiv:1712.00424 (2017)

  29. Zhao, W.X., et al.: Recbole 2.0: towards a more up-to-date recommendation library. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 4722–4726 (2022)

    Google Scholar 

  30. Zhou, G., et al.: Deep interest network for click-through rate prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1059–1068 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haowen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H. et al. (2024). GACE: Learning Graph-Based Cross-Page Ads Embedding for Click-Through Rate Prediction. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1969. Springer, Singapore. https://doi.org/10.1007/978-981-99-8184-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8184-7_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8183-0

  • Online ISBN: 978-981-99-8184-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics