Skip to main content

Customized Anchors Can Better Fit the Target in Siamese Tracking

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1969))

Included in the following conference series:

  • 339 Accesses

Abstract

Most existing siamese trackers rely on some fixed anchors to estimate the scale and aspect ratio for all targets. However, in real tracking, different targets have different sizes and shapes, these predefined anchors are not enough to cover all possible scales and aspect ratios caused by various movement and deformation, so an adaptive scale and aspect ratio estimation method is expected for robust online tracking. In this paper, a customized anchor generation module is first proposed to estimate the shape of the target and generate customized anchors adapted to the target. Then, through an anchor adaptation module, each anchor information is embed into corresponding feature to learn more discriminative features. Finally, We design a Target-aware feature correlation module to reduce the interference of background information. It takes the region of interest of template as variable template and its central subregion as central template, and then performs global and local correlation operations, respectively. Experiments on benchmarks including OTB100, VOT2019, LaSOT, UAV123, and VOT2018 show that our tracker achieves promising performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional Siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  2. Chen, X., Yan, B., Zhu, J., Wang, D., Yang, X., Lu, H.: Transformer tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8126–8135 (2021)

    Google Scholar 

  3. Chen, Z., Zhong, B., Li, G., Zhang, S., Ji, R.: Siamese box adaptive network for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6668–6677 (2020)

    Google Scholar 

  4. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ATOM: accurate tracking by overlap maximization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4660–4669 (2019)

    Google Scholar 

  5. Du, F., Liu, P., Zhao, W., Tang, X.: Correlation-guided attention for corner detection based visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6836–6845 (2020)

    Google Scholar 

  6. Fan, H., et al.: LaSOT: a high-quality benchmark for large-scale single object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5374–5383 (2019)

    Google Scholar 

  7. Gao, S., Zhou, C., Ma, C., Wang, X., Yuan, J.: AiATrack: attention in attention for transformer visual tracking. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022, Part XXII. LNCS, vol. 13682. pp. 146–164. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_9

  8. Guo, D., Wang, J., Cui, Y., Wang, Z., Chen, S.: SiamCAR: Siamese fully convolutional classification and regression for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6269–6277 (2020)

    Google Scholar 

  9. Huang, L., Zhao, X., Huang, K.: GOT-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1562–1577 (2019)

    Article  Google Scholar 

  10. Kristan, M., et al.: The sixth visual object tracking VOT2018 challenge results. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 3–53. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_1

    Chapter  Google Scholar 

  11. Kristan, M., et al.: The seventh visual object tracking VOT2019 challenge results. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  12. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of Siamese visual tracking with very deep networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4282–4291 (2019)

    Google Scholar 

  13. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with Siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018)

    Google Scholar 

  14. Liao, B., Wang, C., Wang, Y., Wang, Y., Yin, J.: PG-Net: pixel to global matching network for visual tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 429–444. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_26

    Chapter  Google Scholar 

  15. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  16. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_27

    Chapter  Google Scholar 

  17. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  18. Shen, Q., et al.: Unsupervised learning of accurate Siamese tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8101–8110 (2022)

    Google Scholar 

  19. Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D.: Region proposal by guided anchoring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2965–2974 (2019)

    Google Scholar 

  20. Wu, Q., Yang, T., Liu, Z., Wu, B., Shan, Y., Chan, A.B.: DropMAE: masked autoencoders with spatial-attention dropout for tracking tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14561–14571 (2023)

    Google Scholar 

  21. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)

    Google Scholar 

  22. Xu, Y., Wang, Z., Li, Z., Yuan, Y., Yu, G.: SiamFC++: towards robust and accurate visual tracking with target estimation guidelines. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12549–12556 (2020)

    Google Scholar 

  23. Zhang, D., Zheng, Z., Jia, R., Li, M.: Visual tracking via hierarchical deep reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3315–3323 (2021)

    Google Scholar 

  24. Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware Siamese networks for visual object tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 103–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_7

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 62266009, 61866004, 62276073, 61966004, 61962007), Guangxi Natural Science Foundation (Nos. 2018GXNSFDA281009, 2019GXNSFDA245018, 2018GXNSFDA294001), Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing, Innovation Project of Guangxi Graduate Education(YCSW2023187), and Guangxi “Bagui Scholar” Teams for Innovation and Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canlong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, S., Zhang, C., Li, Z., Hu, L., Deng, Y. (2024). Customized Anchors Can Better Fit the Target in Siamese Tracking. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1969. Springer, Singapore. https://doi.org/10.1007/978-981-99-8184-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8184-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8183-0

  • Online ISBN: 978-981-99-8184-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics