Skip to main content

Towards Automating Semantic Relationship Awareness in Operational Technology Monitoring

  • Conference paper
  • First Online:
Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications (FDSE 2023)

Abstract

Critical infrastructures in areas like road traffic management naturally rely on the broad use of “Operational Technology (OT)” to ensure efficient and safe road traffic monitoring (RTM) through “OT objects” like sensors and actuators whereby monitoring OT itself (“OTM”) is evenly crucial. OTM is highly challenging, not least due to massive heterogeneity of OT, immense complexity and size and omnipresence of evolution. As a consequence, knowledge about interdependencies between OT objects in form of semantic relationships is often outdated or simply not available. Thus, in case of incidents, detection of cause and effect in the sense of a situational picture is missing.

In order to counteract this fundamental deficiency, we aim to automatically recognize semantic relationships between OT objects to build up an ontological knowledge base as prerequisite for achieving OT situation awareness. The contribution of this paper is to sketch out state-of-research w.r.t. real-world challenges we are facing and based on that to put forward appropriate research questions, leading to the identification and in-depth discussion of potential concepts and technologies appearing to be useful for our work. Overall, this contribution forms the conceptual framework for a proof-of-concept prototype already realized on basis of real-world OT in the area of road traffic management.

This work is supported by Austrian Research Promotion Agency (FFG) under grant Forschungspartnerschaften 874490.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alam, I.E., et al.: A survey of network virtualization techniques for Internet of Things using SDN and NFV. ACM Comput. Surv. (CSUR) 53(2), 1–40 (2020)

    Google Scholar 

  2. Alevizos, E., et al.: Probabilistic CE recognition: a survey. ACM CSUR 50, 1–31 (2017)

    Google Scholar 

  3. Ali, N., Hong, J.-E.: Failure detection and prevention for CPS using ontology-based knowledge base. Computers 7, 68 (2018)

    Article  Google Scholar 

  4. Bajaj, G., et al.: 4w1h in IoT semantics. IEEE Access 6, 65488–65506 (2018)

    Article  Google Scholar 

  5. Becker, F., et al.: A conceptual model for digital shadows in industry and its application. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) Conceptual Modeling. ER 2021. LNCS, vol. 13011, pp. 271–281. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_22

  6. Belkaroui, R., et al.: Towards events ontology based on data sensors network for viticulture domain. In: Proceedings of the 8th International Conference on the Internet of Things. ACM (2018)

    Google Scholar 

  7. Bermudez-Edo, M., et al.: IoT-Lite: a lightweight semantic model for the IoT and its use with dynamic semantics. Pers. Ubiquit. Comput. 21, 475–487 (2017)

    Article  Google Scholar 

  8. Brauner, P., et al.: A computer science perspective on digital transformation in production. ACM Trans. Internet Things 3, 1–32 (2022)

    Article  Google Scholar 

  9. Carata, L., et al.: A primer on provenance. Commun. ACM 57(5), 52–60 (2014)

    Article  Google Scholar 

  10. Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy of self-aware and self-adaptive cloud autoscaling systems. ACM Comput. Surv. (CSUR) 51, 1–40 (2018)

    Google Scholar 

  11. De, S., et al.: Ontologies and Context Modeling for the WoT. Morgan Kaufmann, San Francisco (2017)

    Google Scholar 

  12. Finogeev, A., et al.: Intelligent monitoring system for smart road environment. J. Ind. Inf. Integr. 15, 15–20 (2019)

    Google Scholar 

  13. Flentge, F., Beyer, U.: The ISE meta model for critical infrastructures. In: Goetz, E., Shenoi, S. (eds.) Critical Infrastructure Protection. ICCIP 2007. IFIP International Federation for Information Processing, vol. 253, pp. 323–336. Springer, Boston, MA (2007). https://doi.org/10.1007/978-0-387-75462-8_23

  14. Genova, G., Llorens, J., Fuentes, J.M.: UML associations: a structural and contextual view. J. Object Technol. 3, 83–100 (2004)

    Article  Google Scholar 

  15. Graf, D., Retschitzegger, W., et al.: Towards OTM in ITS. In: Proceedings of the 11th International Conference on Management of Digital EcoSystems (MEDES), pp. 237–241, ACM, Limassol (2019)

    Google Scholar 

  16. Graf, D., Retschitzegger, W., et al.: Cutting a path through the IoT ontology jungle – a meta survey. In: Proceedings of the International Conference on IoT & Intelligence Systems. IEEE, Bali (2019)

    Google Scholar 

  17. Graf, D., Retschitzegger, W., et al.: Event-driven ontology population. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds.) Trends and Applications in Information Systems and Technologies . WorldCIST 2021. AISC, vol. 1366, pp. 405–415. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72651-5_39

  18. Graf, D., Retschitzegger, W., et al.: Bridging Signals and Human Intelligence. In: Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M. (eds.) Knowledge Science, Engineering and Management. KSEM 2022. LNCS, vol. 13369. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-10986-7_46

  19. Graf, D., Retschitzegger, W., et al.: Semantic-driven mining of functional dependencies in large-scale SoS. In: Rocha, Á., Ferrás, C., Méndez Porras, A., Jimenez Delgado, E. (eds.) Information Technology and Systems. ICITS 2022. LNNS, vol. 414, pp. 344–355. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96293-7_31

  20. Graf, D., Retschitzegger, W., et al.: Towards message-driven ontology population. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Orovic, I., Moreira, F. (eds.) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. AISC, vol. 1159, pp. 361–368. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-45688-7_37

  21. Haller, A., et al.: The SOSA/SSN ontology: a joint WEC and OGC standard specifying the semantics of sensors observations actuation and sampling. Semantic Web 1, 1–19 (2018)

    Google Scholar 

  22. Harper, R., Tee, P.: A method for temporal event correlation. In: IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 13–18. IEEE (2019)

    Google Scholar 

  23. Hazra, A., et al.: A comprehensive survey on interoperability for IIoT: taxonomy, standards, & future directions. ACM Comput. Surv. 55(1), 1–35 (2023)

    Article  Google Scholar 

  24. Jayawardana, V., et al.: Semi-supervised instance population of an ontology using word vector embedding. In: Proceedings of the International Conference on Advances in ICT, pp. 1–7. IEEE (2017)

    Google Scholar 

  25. Kacmajor, M., Kelleher, J.D.: Capturing and measuring thematic relatedness. Lang. Resour. Eval. 54(3), 645–682 (2020)

    Article  Google Scholar 

  26. Kobayashi, S., Otomo, K., Fukuda, K., Esaki, H.: Mining causality of network events in log data. IEEE Trans. Netw. Serv. Manag. 15, 53–67 (2017)

    Article  Google Scholar 

  27. Matzner, M., Scholta, H.: Process mining approaches to detect organizational properties in CPS. In: Proceedings of the 2nd European Conference on Information Systems (ECIS), Tel Aviv (2014)

    Google Scholar 

  28. Mehdiyev, N., et al.: Determination of rule patterns in complex event processing using machine learning techniques. Procedia Comput. Sci. 61, 395–401 (2015)

    Article  Google Scholar 

  29. Messager, A., et al.: Inferring FCT. Connectivity from time-series of events in large scale network deployments. Trans. Netw. Serv. Mang. 16(3), 857–870 (2019)

    Google Scholar 

  30. Murray, G., et al.: The convergence of IT and OT in critical infrastructure. In: Proceedings of the 15th Australian Information Security Management Conference, pp. 149–155 (2017)

    Google Scholar 

  31. Peng, H., et al.: Streaming social event detection and evolution discovery in heterogeneous information networks. ACM Trans. KDD 15(5), 1–33 (2021)

    Google Scholar 

  32. Pliatsios, D., et al.: A survey on SCADA systems: secure protocols, incidents, threats and tactics. IEEE Commun. Surv. Tutor. 22(3), 1942–1976 (2020)

    Article  Google Scholar 

  33. Profanter, S., et al.: OPC UA versus ROS, DDS & MQTT: performance evaluation of industry 4.0 protocols. In: Proceedings of the International Conference on Industrial Technology, Melbourne (2019)

    Google Scholar 

  34. Psorakis, I., et al.: Inferring social network structure in ecological systems from spatio-temporal data streams. J. R. Soc. Interface. 9, 3055–3066 (2012)

    Article  Google Scholar 

  35. Puuska, S., et al.: Nationwide critical infrastructure monitoring using a common operating picture framework. Int. J. Crit. Infrastruct. Prot. 20, 28–47 (2018)

    Article  Google Scholar 

  36. Rinaldi, S., et al.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control. Syst. Mag. 21, 11–25 (2001)

    Article  Google Scholar 

  37. Rivera, L.F., Jimenez, M., Villegas, N.M., Tamura, G., Muller, H.A.: Toward autonomic, software-intensive digital twin systems. IEEE Softw. 39, 20–26 (2022)

    Article  Google Scholar 

  38. Russell, L., et al.: Agile IoT for critical infrastructure resilience: cross-modal sensing as part of a situational awareness. IEEE Internet Things J. 5(6), 4454–4465 (2018)

    Article  Google Scholar 

  39. Sato, D., et al.: A survey on concept drift in process mining. ACM CSUR 54(9), 1–38 (2021)

    Google Scholar 

  40. Scherp, A., et al.: A core ontology on events for representing occurrences in the real world. Multimed. Tools Appl. 58(2), 293–331 (2012)

    Article  Google Scholar 

  41. Schiekofer, R., et al.: A formal mapping between OPC UA and the semantic web. In: Proceedings of the 17th International Conference on Industrial Informatics (INDIN), pp. 33–40. IEEE (2019)

    Google Scholar 

  42. Schuster, D., van Zelst, S.J., van der Aalst, W.M.: Utilizing domain knowledge in data-driven process discovery: a literature review. Comput. Ind. 137, 103612 (2022)

    Article  Google Scholar 

  43. Sethi, P., et al.: IoT: architectures, protocols, & applications. J. Electr. Comput. Eng. 2017, 1–25 (2017)

    Article  Google Scholar 

  44. Song, Y., et al.: Topology tracking of dynamic UAV WLANs. J. Aeronaut. 35(11), 322–335 (2021)

    Article  Google Scholar 

  45. Szilagyi, I., Wira, P.: Ontologies and semantic web for the IoT – a survey. In: Proceedings of the 42nd Conference of the IEEE Industrial Electronics Society, pp. 6949–6954 (2016)

    Google Scholar 

  46. Wen, J., et al.: Toward digital twin-oriented modeling of complex networked systems and their dynamics: a comprehensive survey. IEEE Access 10, 66886–66923 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wieland Schwinger or David Graf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schwinger, W. et al. (2023). Towards Automating Semantic Relationship Awareness in Operational Technology Monitoring. In: Dang, T.K., Küng, J., Chung, T.M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2023. Communications in Computer and Information Science, vol 1925. Springer, Singapore. https://doi.org/10.1007/978-981-99-8296-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8296-7_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8295-0

  • Online ISBN: 978-981-99-8296-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics