Skip to main content

Robust Vietnam’s Motorcycle License Plate Detection and Recognition Using Deep Learning Model

  • Conference paper
  • First Online:
Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications (FDSE 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1925))

Included in the following conference series:

  • 812 Accesses

Abstract

Nowadays, driving fast is an emergency state in many countries in the world and Vietnam in particular, and the consequence is really cruel when an accident occurs. Therefore, it is very important to control the speed of vehicles. Motorcycle license plate recognition (MLPR) is one of many methods. If any motorcycle drives above the speed limit on the road that has a speed camera, a ticket will be sent to your living address. This research proposes a method that can automatically detect license plates (LP) and extract their data. The highest mAP achieved after three hundred epochs is 93% with Yolov8. There are three stages to extracting the LP’s data, the first is detecting the motorcycle, the second is detecting the LP in the motorcycle’s bounding box, and the third is LP recognition using Yolov8 also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Du, S., Ibrahim, M., Shehata, M., Badawy, W.: Automatic license plate recognition (ALPR): a state-of-theart review. IEEE Trans. Circuits Syst. Video Technol. 23(2), 311–325 (2013)

    Google Scholar 

  2. Gonçalves, G.R., Menotti, D., Schwartz, W.R.: License plate recognition based on temporal redundancy. In: IEEE 19th International Conference on Intelligent Transportation Systems (ITSC2016), pp. 2577–2582 (2016)

    Google Scholar 

  3. Rahman, C.A., Badawy, W., Radmanesh, A.: Deep automatic license a real time vehicle’s license plate recognition system. In: IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS’03), pp. 163–166 (2016)

    Google Scholar 

  4. Nguyen, M.T.T., Nguyen, V.D., Jeon, J.W.: Real-time pedestrian detection using a support vector machine and stixel information. In: International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea (South), pp. 1350–1355 (2017). https://doi.org/10.23919/ICCAS.2017.8204203

  5. Chau, D.H., et al.: Plant leaf diseases detection and identification using deep learning model. In: Hassanien, A.E., Rizk, R.Y., Snasel, V., AbdelKader, R.F. (eds.) The 8th International Conference on Advanced Machine Learning and Technologies and Applications (AMLTA2022). AMLTA 2022. LNDECT, vol. 113, pp. 3–10. Springer, Cham (2022). https://doi.org/10.1007/9783031039188_1

  6. Nguyen, V.D., Trinh, T.D., Tran, H.N.: A robust triangular sigmoid pattern-based obstacle detection algorithm in resource-limited devices. IEEE Trans. Intell. Transp. Syst. 24(6), 5936–5945 (2023). https://doi.org/10.1109/TITS.2023.3253509

  7. Badr A., Abdelwahab, M.M., Thabet, A.M., Abdelsadek, A.M.: Automatic number plate recognition system. Ann. Univ. Craiova - Math. Comput. Sci. Ser. 38(1), 62–71 (2011)

    Google Scholar 

  8. Zheng, D., Zhao, Y., Wang, J.: An efficient method of license plate location. Pattern Recognit. Lett. 26(15), 2431–2438 (2005). https://doi.org/10.1016/j.patrec.2005.04.014

  9. Du, S., Ibrahim, M., Shehata, M., Badawy, W.: Automatic license plate recognition (ALPR): a state-of-the-art review. IEEE Trans. Circuits Syst. Video Technol. 23(2), 311–325 (2013)

    Google Scholar 

  10. Silva, S.M., Jung, C.R.: Real-time Brazilian license plate detection and recognition using deep convolutional neural networks. In: Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 55–62, October 2017

    Google Scholar 

  11. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 779–788 (2016)

    Google Scholar 

  12. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics Yolov8 (2023). https://docs.ultralytics.com/models/Yolov8/

  13. Terven, J., Cordova-Esparza, D.: A comprehensive review of yolo: from yolov1 and beyond, 09 June 2023. arXiv. http://arxiv.org/abs/2304.00501. Accessed 05 July 2023

  14. Motorcycle License Plate Detection - v8 2022–08-27 Roboflow. https://universe.roboflow.com/motorcycle-9gyny/motorcycle-license-plate-detection/dataset/8

  15. Aboah, A., Wang, B., Bagci, U., Adu-Gyamfi, Y.: Real-time multi-class helmet violation detection using few-shot data sampling technique and Yolov8, 13 April 2023. arXiv. http://arxiv.org/abs/2304.08256. Accessed 08 July 2023

  16. Duc, H.L., Minh, T.T., Hong, K.V., Hoang, H.L.: 84 Birds classification using transfer learning and EfficientNetB2. In: Dang, T.K., Kung, J., Chung, T.M. (eds.) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2022. CCIS, vol. 1688, pp. 698–705. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-8069-5_50

  17. Hong, K.V., Minh, T.T., Duc, H.L., Nhat, N.T., Hoang, H.L.: 104 Fruits classification using transfer learning and DenseNet201 fine-tuning. In: Barolli, L. (eds.) Complex, Intelligent and Software Intensive Systems. CISIS 2022. LNNS, vol. 497, pp. 160–170. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08812-4_16

  18. Akhtar, Z., Ali, R.: Automatic number plate recognition using random forest classifier, 26 March 2023. arXiv. https://doi.org/10.48550/arXiv.2303.14856

  19. Neupane, D., Bhattarai, A., Aryal, S., Bouadjenek, M.R., Seok, U.-M., Seok, J.: SHINE: deep learning-based accessible parking management system, 28 April 2023. arXiv. https://doi.org/10.48550/arXiv.2302.00837

  20. Hatami, S., Sadedel, M., Jamali, F.: Iranian license plate recognition using a reliable deep learning approach, 03 May 2023. arXiv. https://doi.org/10.48550/arXiv.2305.02292

  21. MNIST Dataset \(>\) Overview, Roboflow. https://universe.roboflow.com/popular-benchmarks/mnist-cjkff

  22. Nguyen, D.V.M., Vu, A.T., Ross, V., Brijs, T., Wets, G., Brijs, K.: Small-displacement motorcycle crashes and risky ridership in Vietnam: findings from a focus group and in-depth interview study. Saf. Sci. 152, 105514 (2022). https://doi.org/10.1016/j.ssci.2021.105514

Download references

Acknowledgments

The authors would like to thank Eastern International University (EIU) Vietnam for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shreya Banerjee or Vinh Dinh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, D.H., Mazumder, D., Quach, LD., Banerjee, S., Nguyen, V.D. (2023). Robust Vietnam’s Motorcycle License Plate Detection and Recognition Using Deep Learning Model. In: Dang, T.K., Küng, J., Chung, T.M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2023. Communications in Computer and Information Science, vol 1925. Springer, Singapore. https://doi.org/10.1007/978-981-99-8296-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8296-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8295-0

  • Online ISBN: 978-981-99-8296-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics