Abstract
Nowadays, driving fast is an emergency state in many countries in the world and Vietnam in particular, and the consequence is really cruel when an accident occurs. Therefore, it is very important to control the speed of vehicles. Motorcycle license plate recognition (MLPR) is one of many methods. If any motorcycle drives above the speed limit on the road that has a speed camera, a ticket will be sent to your living address. This research proposes a method that can automatically detect license plates (LP) and extract their data. The highest mAP achieved after three hundred epochs is 93% with Yolov8. There are three stages to extracting the LP’s data, the first is detecting the motorcycle, the second is detecting the LP in the motorcycle’s bounding box, and the third is LP recognition using Yolov8 also.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Du, S., Ibrahim, M., Shehata, M., Badawy, W.: Automatic license plate recognition (ALPR): a state-of-theart review. IEEE Trans. Circuits Syst. Video Technol. 23(2), 311–325 (2013)
Gonçalves, G.R., Menotti, D., Schwartz, W.R.: License plate recognition based on temporal redundancy. In: IEEE 19th International Conference on Intelligent Transportation Systems (ITSC2016), pp. 2577–2582 (2016)
Rahman, C.A., Badawy, W., Radmanesh, A.: Deep automatic license a real time vehicle’s license plate recognition system. In: IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS’03), pp. 163–166 (2016)
Nguyen, M.T.T., Nguyen, V.D., Jeon, J.W.: Real-time pedestrian detection using a support vector machine and stixel information. In: International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea (South), pp. 1350–1355 (2017). https://doi.org/10.23919/ICCAS.2017.8204203
Chau, D.H., et al.: Plant leaf diseases detection and identification using deep learning model. In: Hassanien, A.E., Rizk, R.Y., Snasel, V., AbdelKader, R.F. (eds.) The 8th International Conference on Advanced Machine Learning and Technologies and Applications (AMLTA2022). AMLTA 2022. LNDECT, vol. 113, pp. 3–10. Springer, Cham (2022). https://doi.org/10.1007/9783031039188_1
Nguyen, V.D., Trinh, T.D., Tran, H.N.: A robust triangular sigmoid pattern-based obstacle detection algorithm in resource-limited devices. IEEE Trans. Intell. Transp. Syst. 24(6), 5936–5945 (2023). https://doi.org/10.1109/TITS.2023.3253509
Badr A., Abdelwahab, M.M., Thabet, A.M., Abdelsadek, A.M.: Automatic number plate recognition system. Ann. Univ. Craiova - Math. Comput. Sci. Ser. 38(1), 62–71 (2011)
Zheng, D., Zhao, Y., Wang, J.: An efficient method of license plate location. Pattern Recognit. Lett. 26(15), 2431–2438 (2005). https://doi.org/10.1016/j.patrec.2005.04.014
Du, S., Ibrahim, M., Shehata, M., Badawy, W.: Automatic license plate recognition (ALPR): a state-of-the-art review. IEEE Trans. Circuits Syst. Video Technol. 23(2), 311–325 (2013)
Silva, S.M., Jung, C.R.: Real-time Brazilian license plate detection and recognition using deep convolutional neural networks. In: Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 55–62, October 2017
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 779–788 (2016)
Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics Yolov8 (2023). https://docs.ultralytics.com/models/Yolov8/
Terven, J., Cordova-Esparza, D.: A comprehensive review of yolo: from yolov1 and beyond, 09 June 2023. arXiv. http://arxiv.org/abs/2304.00501. Accessed 05 July 2023
Motorcycle License Plate Detection - v8 2022–08-27 Roboflow. https://universe.roboflow.com/motorcycle-9gyny/motorcycle-license-plate-detection/dataset/8
Aboah, A., Wang, B., Bagci, U., Adu-Gyamfi, Y.: Real-time multi-class helmet violation detection using few-shot data sampling technique and Yolov8, 13 April 2023. arXiv. http://arxiv.org/abs/2304.08256. Accessed 08 July 2023
Duc, H.L., Minh, T.T., Hong, K.V., Hoang, H.L.: 84 Birds classification using transfer learning and EfficientNetB2. In: Dang, T.K., Kung, J., Chung, T.M. (eds.) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2022. CCIS, vol. 1688, pp. 698–705. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-8069-5_50
Hong, K.V., Minh, T.T., Duc, H.L., Nhat, N.T., Hoang, H.L.: 104 Fruits classification using transfer learning and DenseNet201 fine-tuning. In: Barolli, L. (eds.) Complex, Intelligent and Software Intensive Systems. CISIS 2022. LNNS, vol. 497, pp. 160–170. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08812-4_16
Akhtar, Z., Ali, R.: Automatic number plate recognition using random forest classifier, 26 March 2023. arXiv. https://doi.org/10.48550/arXiv.2303.14856
Neupane, D., Bhattarai, A., Aryal, S., Bouadjenek, M.R., Seok, U.-M., Seok, J.: SHINE: deep learning-based accessible parking management system, 28 April 2023. arXiv. https://doi.org/10.48550/arXiv.2302.00837
Hatami, S., Sadedel, M., Jamali, F.: Iranian license plate recognition using a reliable deep learning approach, 03 May 2023. arXiv. https://doi.org/10.48550/arXiv.2305.02292
MNIST Dataset \(>\) Overview, Roboflow. https://universe.roboflow.com/popular-benchmarks/mnist-cjkff
Nguyen, D.V.M., Vu, A.T., Ross, V., Brijs, T., Wets, G., Brijs, K.: Small-displacement motorcycle crashes and risky ridership in Vietnam: findings from a focus group and in-depth interview study. Saf. Sci. 152, 105514 (2022). https://doi.org/10.1016/j.ssci.2021.105514
Acknowledgments
The authors would like to thank Eastern International University (EIU) Vietnam for funding this research.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Le, D.H., Mazumder, D., Quach, LD., Banerjee, S., Nguyen, V.D. (2023). Robust Vietnam’s Motorcycle License Plate Detection and Recognition Using Deep Learning Model. In: Dang, T.K., Küng, J., Chung, T.M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2023. Communications in Computer and Information Science, vol 1925. Springer, Singapore. https://doi.org/10.1007/978-981-99-8296-7_5
Download citation
DOI: https://doi.org/10.1007/978-981-99-8296-7_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8295-0
Online ISBN: 978-981-99-8296-7
eBook Packages: Computer ScienceComputer Science (R0)