Skip to main content

Cross Domain Pulmonary Nodule Detection Without Source Data

  • Conference paper
  • First Online:
AI 2023: Advances in Artificial Intelligence (AI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14471))

Included in the following conference series:

  • 514 Accesses

Abstract

The model performance on cross-domain pulmonary nodule detection usually degrades because of the significant shift in data distributions and the scarcity of annotated medical data in the test scenarios. Current approaches to cross-domain object detection assume that training data from the source domain are freely available; however, such an assumption is implausible in the medical field, as the data are confidential and cannot be shared due to privacy concerns. Thus, this paper introduces source data-free cross-domain pulmonary nodule detection. In this setting, only a pre-trained model from the source domain and a few annotated samples from the target domain are available. We introduce a novel method to tackle this issue, adapting the feature extraction module for the target domain through minimizing the proposed General Entropy (GE). Specifically, we optimize the batch normalization (BN) layers of the model by GE minimization. Thus, the dataset-level statistics of the target domain are utilized for optimization and inference. Furthermore, we tune the detection head of the model using annotated target samples to mitigate the rater difference and improve the accuracy. Extensive experiments on three different pulmonary nodule datasets show the efficacy of our method for source data-absent cross-domain pulmonary nodule detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, Q., Pan, Y., Ngo, C., Tian, X., Duan, L., Yao, T.: Exploring object relation in mean teacher for cross-domain detection. In: CVPR, pp. 11457–11466. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  2. Chen, Y., Li, W., Sakaridis, C., Dai, D., Gool, L.V.: Domain adaptive faster R-CNN for object detection in the wild. In: CVPR, pp. 3339–3348. Computer Vision Foundation/IEEE (2018)

    Google Scholar 

  3. Girshick, R.B.: Fast R-CNN, In: ICCV. pp. 1440–1448. IEEE (2015)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE (2016)

    Google Scholar 

  5. He, M., et al.: Cross domain object detection by target-perceived dual branch distillation. In: CVPR, pp. 9560–9570. IEEE (2022)

    Google Scholar 

  6. He, Y., Zhu, C., Wang, J., Savvides, M., Zhang, X.: Bounding box regression with uncertainty for accurate object detection. In: CVPR, pp. 2888–2897. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  7. He, Z., Zhang, L.: Domain adaptive object detection via asymmetric tri-way faster-RCNN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 309–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_19

    Chapter  Google Scholar 

  8. Hofmanninger, J., Prayer, F., Pan, J., Rohrich, S., Prosch, H., Langs, G.: Automatic lung segmentation in routine imaging is a data diversity problem, not a methodology problem. CoRR abs/2001.11767 (2020)

    Google Scholar 

  9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, vol. 37, pp. 448–456 (2015)

    Google Scholar 

  10. Iwasawa, Y., Matsuo, Y.: Test-time classifier adjustment module for model-agnostic domain generalization. In: NeurIPS, pp. 2427–2440 (2021)

    Google Scholar 

  11. Jiang, Y., et al.: A novel negative-transfer-resistant fuzzy clustering model with a shared cross-domain transfer latent space and its application to brain CT image segmentation. IEEE ACM Trans. Comput. Biol. Bioinform. 18(1), 40–52 (2021)

    MathSciNet  Google Scholar 

  12. Khodabandeh, M., Vahdat, A., Ranjbar, M., Macready, W.G.: A robust learning approach to domain adaptive object detection. In: ICCV, pp. 480–490. IEEE (2019)

    Google Scholar 

  13. Li, X., et al.: Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. In: NeurIPS (2020)

    Google Scholar 

  14. Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for practical domain adaptation. In: ICLR (2017)

    Google Scholar 

  15. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: CVPR, pp. 936–944. IEEE (2017)

    Google Scholar 

  16. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2999–3007. IEEE (2017)

    Google Scholar 

  17. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  18. Mei, J., Cheng, M.M., Xu, G., Wan, L.R., Zhang, H.: SANet: a slice-aware network for pulmonary nodule detection. IEEE Trans. Pattern Anal. Mach. Intell. 44, 4374–4387 (2021)

    Google Scholar 

  19. Morosov, S., et al.: Tagged results of lung computed tomography scans (RU 2018620500) (2018)

    Google Scholar 

  20. Qiu, H., Li, H., Wu, Q., Shi, H.: Offset bin classification network for accurate object detection. In: CVPR, pp. 13185–13194. Computer Vision Foundation/IEEE (2020)

    Google Scholar 

  21. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788. IEEE (2016)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: CVPR, pp. 6956–6965. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  24. Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Google Scholar 

  25. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A.A., Hardt, M.: Test-time training with self-supervision for generalization under distribution shifts. In: ICML, vol. 119, pp. 9229–9248. PMLR (2020)

    Google Scholar 

  27. Tang, H., Zhang, C., Xie, X.: NoduleNet: decoupled false positive reduction for pulmonary nodule detection and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 266–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_30

    Chapter  Google Scholar 

  28. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: ICCV, pp. 9626–9635. IEEE (2019)

    Google Scholar 

  29. Tianchi: Tianchi medical AI competition: Intelligent diagnosis of pulmonary nodules (2017). https://tianchi.aliyun.com/competition/entrance/231601/introduction

  30. Tychsen-Smith, L., Petersson, L.: Improving object localization with fitness NMS and bounded IOU loss. In: CVPR, pp. 6877–6885. Computer Vision Foundation/IEEE (2018)

    Google Scholar 

  31. Wang, D., Shelhamer, E., Liu, S., Olshausen, B.A., Darrell, T.: TENT: fully test-time adaptation by entropy minimization. In: ICLR (2021)

    Google Scholar 

  32. Xu, C., Zhao, X., Jin, X., Wei, X.: Exploring categorical regularization for domain adaptive object detection. In: CVPR, pp. 11721–11730. Computer Vision Foundation/IEEE (2020)

    Google Scholar 

  33. Xu, R., et al.: SGDA: towards 3D universal pulmonary nodule detection via slice grouped domain attention. IEEE/ACM Trans. Comput. Biol. Bioinform. 1–13 (2023). https://doi.org/10.1109/TCBB.2023.3253713

  34. Xu, R., Luo, Y., Du, B., Kuang, K., Yang, J.: LSSANet: a long short slice-aware network for pulmonary nodule detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13431, pp. 664–674. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_63

    Chapter  Google Scholar 

  35. Yang, T., Zhou, S., Wang, Y., Lu, Y., Zheng, N.: Test-time batch normalization. CoRR abs/2205.10210 (2022)

    Google Scholar 

  36. You, F., Li, J., Zhao, Z.: Test-time batch statistics calibration for covariate shift. CoRR abs/2110.04065 (2021)

    Google Scholar 

  37. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: CVPR, pp. 9756–9765. IEEE (2020)

    Google Scholar 

  38. Zhang, Y., Wang, Z., Mao, Y.: RPN prototype alignment for domain adaptive object detector. In: CVPR, pp. 12425–12434. Computer Vision Foundation/IEEE (2021)

    Google Scholar 

  39. Zhao, G., Li, G., Xu, R., Lin, L.: Collaborative training between region proposal localization and classification for domain adaptive object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 86–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_6

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Special Fund of Hubei Luojia Laboratory under Grant 220100014, and the Fundamental Research Funds for the Central Universities (No. 2042023kf1033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, R., Luo, Y., Xu, Y. (2024). Cross Domain Pulmonary Nodule Detection Without Source Data. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14471. Springer, Singapore. https://doi.org/10.1007/978-981-99-8388-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8388-9_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8387-2

  • Online ISBN: 978-981-99-8388-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics