Skip to main content

LiDAR Inpainting of UAV Based 3D Point Cloud Using Supervised Learning

  • Conference paper
  • First Online:
AI 2023: Advances in Artificial Intelligence (AI 2023)

Abstract

Unmanned Aerial Vehicles (UAV) can quickly scan unknown environments to support a wide range of operations from intelligence gathering to search and rescue. LiDAR point clouds can give a detailed and accurate 3D representation of such unknown environments. However, LiDAR point clouds are often sparse and miss important information due to occlusions and limited sensor resolution. Several studies used inpainting techniques on LiDAR point clouds to complete the missing regions. However, these studies have three main limitations that hinder their use in UAV-based environment 3D reconstruction. First, existing studies focused only on synthetic data. Second, while the point clouds obtained from a UAV flying at moderate to high speeds can be severely distorted, none of the existing studies applied inpainting to UAV-based LiDAR point clouds. Third, all existing techniques considered inpainting isolated objects and did not generalise to inpainting complete environments. This paper aims to address these gaps by proposing an algorithm for inpainting point clouds of complete 3D environments obtained from a UAV. We use a supervised learning encoder-decoder model for point cloud inpainting and environment reconstruction. We tested the proposed approach for different LiDAR parameters and different environmental settings. The results demonstrate the ability of the system to inpaint the objects with a minimum average Chamfer Distance (CD) loss of 0.028 at a UAV speed of 5 ms\(^{-1}\). We present the results of the 3D reconstruction for a few test environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: International Conference on Machine Learning, pp. 40–49. PMLR (2018)

    Google Scholar 

  2. Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307 (2019)

    Google Scholar 

  3. Chen, J., Yi, J.S.K., Kahoush, M., Cho, E.S., Cho, Y.K.: Point cloud scene completion of obstructed building facades with generative adversarial inpainting. Sensors 20(18), 5029 (2020)

    Article  Google Scholar 

  4. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)

    Google Scholar 

  5. Foley, K.: Parrot AR drone 2.0 elite edition (Jun 2022)

    Google Scholar 

  6. Fu, Z., Hu, W., Guo, Z.: Point cloud inpainting on graphs from non-local self-similarity. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 2137–2141. IEEE (2018)

    Google Scholar 

  7. Gu, J., et al.: Weakly-supervised 3D shape completion in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 283–299. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_17

    Chapter  Google Scholar 

  8. Hong, X., Xiong, P., Ji, R., Fan, H.: Deep fusion network for image completion. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2033–2042 (2019)

    Google Scholar 

  9. Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X.: PF-Net: point fractal network for 3D point cloud completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7662–7670 (2020)

    Google Scholar 

  10. Insafutdinov, E., Dosovitskiy, A.: Unsupervised learning of shape and pose with differentiable point clouds. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Liu, H., Jiang, B., Song, Y., Huang, W., Yang, C.: Rethinking image inpainting via a mutual encoder-decoder with feature equalizations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 725–741. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_43

    Chapter  Google Scholar 

  13. Mehendale, N., Neoge, S.: Review on lidar technology. Available at SSRN 3604309 (2020)

    Google Scholar 

  14. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  15. Tchapmi, L.P., Kosaraju, V., Rezatofighi, H., Reid, I., Savarese, S.: Topnet: structural point cloud decoder. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 383–392 (2019)

    Google Scholar 

  16. Wang, P.: Research on comparison of lidar and camera in autonomous driving. In: Journal of Physics: Conference Series, vol. 2093, p. 012032. IOP Publishing (2021)

    Google Scholar 

  17. Yang, Y., Feng, C., Shen, Y., Tian, D.: Foldingnet: interpretable unsupervised learning on 3d point clouds. arXiv preprint arXiv:1712.07262 2(3), 5 (2017)

  18. Yeh, R.A., Chen, C., Yian Lim, T., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with deep generative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5485–5493 (2017)

    Google Scholar 

  19. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  20. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: 2018 International Conference on 3D Vision (3DV), pp. 728–737. IEEE (2018)

    Google Scholar 

  21. Zhang, X., Le, X., Panotopoulou, A., Whiting, E., Wang, C.C.: Perceptual models of preference in 3D printing direction. ACM Trans. Graph. (TOG) 34(6), 1–12 (2015)

    Article  Google Scholar 

  22. Zhang, X., Le, X., Wu, Z., Whiting, E., Wang, C.C.: Data-driven bending elasticity design by shell thickness. In: Computer Graphics Forum, vol. 35, pp. 157–166. Wiley Online Library (2016)

    Google Scholar 

  23. Zhao, B., Le, X., Xi, J.: A novel SDASS descriptor for fully encoding the information of a 3D local surface. Inf. Sci. 483, 363–382 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work is funded by the Australian Research Council Grant DP200101211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Talha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Talha, M., Hussein, A., Hossny, M. (2024). LiDAR Inpainting of UAV Based 3D Point Cloud Using Supervised Learning. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14471. Springer, Singapore. https://doi.org/10.1007/978-981-99-8388-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8388-9_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8387-2

  • Online ISBN: 978-981-99-8388-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics