Skip to main content

Aging Contrast: A Contrastive Learning Framework for Fish Re-identification Across Seasons and Years

  • Conference paper
  • First Online:
AI 2023: Advances in Artificial Intelligence (AI 2023)

Abstract

The fields of biology, ecology, and fisheries management are witnessing a growing demand for distinguishing individual fish. In recent years, deep learning methods have emerged as a promising tool for image-based fish recognition. Our study is focused on the re-identification of masu salmon from Japan, wherein fish were individually marked and photographed to evaluate discriminative body characteristics. Unlike previous studies where fish were sampled during the same time period, we evaluated individual re-identification across seasons and years to address challenges due to aging, seasonal variation, and other factors. In this paper, we propose a new contrastive learning framework called Aging Contrast (AgCo) and evaluate its performance on the masu salmon dataset. Our analysis indicates that, unlike large changes in body size over time, the pattern of parr marks on the lateral line of the fish body remains relatively stable, despite some change in coloration across seasons. AgCo accounts for such seasonally-invariant features and performs re-identification based on the cosine similarity of these features. Extensive experiments show that our AgCo method outperforms other state-of-the-art methods.

W. Shi and Z. Zhou—Contributed equally to this work.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Jubouri, Q., Al-Azawi, R., Al-Taee, M., Young, I.: Efficient individual identification of zebrafish using hue/saturation/value color model. Egypt. J. Aquat. Res. 44(4), 271–277 (2018)

    Article  Google Scholar 

  2. Alsmadi, M.K., Omar, K.B., Noah, S.A., Almarashdeh, I.: Fish recognition based on robust features extraction from size and shape measurements using neural network. J. Comput. Sci. 6(10), 1088 (2010)

    Article  Google Scholar 

  3. Bekkozhayeva, D., Cisar, P.: Image-based automatic individual identification of fish without obvious patterns on the body (scale pattern). Appl. Sci. 12(11), 5401 (2022)

    Article  Google Scholar 

  4. Bekkozhayeva, D., Saberioon, M., Cisar, P.: Automatic individual non-invasive photo-identification of fish (sumatra barb puntigrus tetrazona) using visible patterns on a body. Aquacult. Int. 29(4), 1481–1493 (2021)

    Article  Google Scholar 

  5. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural. Inf. Process. Syst. 33, 9912–9924 (2020)

    Google Scholar 

  6. Chen, P., et al.: A study on giant panda recognition based on images of a large proportion of captive pandas. Ecol. Evol. 10(7), 3561–3573 (2020)

    Article  Google Scholar 

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  8. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E.: Big self-supervised models are strong semi-supervised learners. Adv. Neural. Inf. Process. Syst. 33, 22243–22255 (2020)

    Google Scholar 

  9. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  10. Cisar, P., Bekkozhayeva, D., Movchan, O., Saberioon, M., Schraml, R.: Computer vision based individual fish identification using skin dot pattern. Sci. Rep. 11(1), 1–12 (2021)

    Article  Google Scholar 

  11. Delcourt, J., et al.: Individual identification and marking techniques for zebrafish. Rev. Fish Biol. Fish. 28(4), 839–864 (2018). https://doi.org/10.1007/s11160-018-9537-y

    Article  Google Scholar 

  12. Ding, G., et al.: Fish recognition using convolutional neural network. In: OCEANS 2017-Anchorage, pp. 1–4. IEEE (2017)

    Google Scholar 

  13. Ding, R., Wang, L., Zhang, Q., Niu, Z., Zheng, N., Hud, G.: Fine-grained giant panda identification. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2108–2112. IEEE (2020)

    Google Scholar 

  14. Food, Organization, A.: The state of world fisheries and aquaculture. Technical report, Food and Agriculture Organization of the United Nations (2022)

    Google Scholar 

  15. Futamura, R., et al.: Size-dependent growth tactics of a partially migratory fish before migration. Oecologia 198, 371–379 (2022)

    Article  Google Scholar 

  16. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Hirsch, P.E., Eckmann, R.: Individual identification of Eurasian perch perca fluviatilis by means of their stripe patterns. Limnologica 54, 1–4 (2015)

    Article  Google Scholar 

  19. Hou, J., et al.: Identification of animal individuals using deep learning: a case study of giant panda. Biol. Cons. 242, 108414 (2020)

    Article  Google Scholar 

  20. Hridayami, P., Putra, I.K.G.D., Wibawa, K.S.: Fish species recognition using vgg16 deep convolutional neural network. J. Comput. Sci. Eng. 13(3), 124–130 (2019)

    Article  Google Scholar 

  21. Huntingford, F., Borçato, F., Mesquita, F.: Identifying individual common carp cyprinus carpio using scale pattern. J. Fish Biol. 83(5), 1453–1458 (2013)

    Article  Google Scholar 

  22. Kalantidis, Y., Sariyildiz, M.B., Pion, N., Weinzaepfel, P., Larlus, D.: Hard negative mixing for contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 21798–21809 (2020)

    Google Scholar 

  23. Kanno, Y., Harris, A., Kishida, O., Utumi, S., Uno, H.: Complex effects of body length and condition on within-tributary movement and emigration in stream salmonids. Ecol. Freshw. Fish 31, 317–329 (2021)

    Article  Google Scholar 

  24. Li, J., Zhou, P., Xiong, C., Hoi, S.C.: Prototypical contrastive learning of unsupervised representations. arXiv preprint arXiv:2005.04966 (2020)

  25. Li, W., Ji, Z., Wang, L., Sun, C., Yang, X.: Automatic individual identification of Holstein dairy cows using tailhead images. Comput. Electron. Agric. 142, 622–631 (2017)

    Article  Google Scholar 

  26. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  27. Matkowski, W.M., Kong, A.W.K., Su, H., Chen, P., Hou, R., Zhang, Z.: Giant panda face recognition using small dataset. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1680–1684. IEEE (2019)

    Google Scholar 

  28. McInnes, M.G., Burns, N.M., Hopkins, C.R., Henderson, G.P., McNeill, D.C., Bailey, D.M.: A new model study species: high accuracy of discrimination between individual freckled hawkfish (paracirrhites forsteri) using natural markings. J. Fish Biol. 96(3), 831–834 (2020)

    Article  Google Scholar 

  29. Morgado-Santos, M., Matos, I., Vicente, L., Collares-Pereira, M.: Scaleprinting: individual identification based on scale patterns. J. Fish Biol. 76(5), 1228–1232 (2010)

    Article  Google Scholar 

  30. Navarro, J., Perezgrueso, A., Barría, C., Coll, M.: Photo-identification as a tool to study small-spotted catshark scyliorhinus canicula. J. Fish Biol. 92(5), 1657–1662 (2018)

    Article  Google Scholar 

  31. Oord, A.V.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  32. Sandford, M., Castillo, G., Hung, T.C.: A review of fish identification methods applied on small fish. Rev. Aquac. 12(2), 542–554 (2020)

    Article  Google Scholar 

  33. Stien, L.H., et al.: Consistent melanophore spot patterns allow long-term individual recognition of Atlantic salmon salmo salar. J. Fish Biol. 91(6), 1699–1712 (2017)

    Article  Google Scholar 

  34. Sun, X., Shi, J., Dong, J., Wang, X.: Fish recognition from low-resolution underwater images. In: 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 471–476. IEEE (2016)

    Google Scholar 

  35. Whooley, P., Berrow, S., Barnes, C.: Photo-identification of fin whales (balaenoptera physalus L.) off the south coast of Ireland. Mar. Biodivers. Rec. 4 (2011)

    Google Scholar 

  36. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  37. Zhou, Z., Hitt, N.P., Letcher, B.H., Shi, W., Li, S.: Pigmentation-based visual learning for salvelinus fontinalis individual re-identification. In: 2022 IEEE International Conference on Big Data (Big Data), pp. 6850–6852. IEEE (2022)

    Google Scholar 

Download references

Acknowledgement

This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G22AC00372.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weili Shi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1981 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, W. et al. (2024). Aging Contrast: A Contrastive Learning Framework for Fish Re-identification Across Seasons and Years. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14471. Springer, Singapore. https://doi.org/10.1007/978-981-99-8388-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8388-9_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8387-2

  • Online ISBN: 978-981-99-8388-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics