Abstract
Multiple data streams learning attracts more and more attention recently. Different from learning a single data stream, the uncertain and complex occurrence of concept drift in multiple data streams, bring challenges in real-time learning task. To address this issue, this paper proposed a method called time-warping-based concept drift learning method (TW-CDM) for dealing with multiple data streams. First, a time-warping-based drift identification process is given to recognize the drift region. Second, an augmented learning process is developed by crossly using the located region data. Finally, a selectively augmented learning process is given to reduce the influence of different drift severity. The proposed method is evaluated on both synthetic and real-world datasets, and compared with benchmark methods. The experiment results show the efficiency of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Álvarez, V., Mazuelas, S., Lozano, J.A.: Minimax classification under concept drift with multidimensional adaptation and performance guarantees. In: International Conference on Machine Learning, pp. 486–499. PMLR (2022)
Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A.: Early drift detection method. In: In 4th International Workshop on Knowledge Discovery from Data Streams. Citeseer (2006)
Balzanella, A., Verde, R.: Histogram-based clustering of multiple data streams. Knowl. Inf. Syst. 62(1), 203–238 (2020)
Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 443–448. SIAM (2007)
Chandra, S., Haque, A., Khan, L., Aggarwal, C.: An adaptive framework for multistream classification. In: Proceedings of the 25th ACM International Conference on Information and Knowledge Management, pp. 1181–1190. Indianapolis, IN, USA (2016)
Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)
Fang, Z., Lu, J., Liu, F., Xuan, J., Zhang, G.: Open set domain adaptation: theoretical bound and algorithm. IEEE Trans. Neural Netw. Learn. Syst. 32(10), 4309–4322 (2020)
Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) Advances in Artificial Intelligence – SBIA 2004. SBIA 2004. LNCS, vol. 3171, pp. 286–295. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29
Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44 (2014)
Haque, A., Wang, Z., Chandra, S., Dong, B., Khan, L., Hamlen, K.W.: Fusion: an online method for multistream classification. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 919–928. Singapore (2017)
Jaysawal, B.P., Huang, J.W.: PSP-AMS: progressive mining of sequential patterns across multiple streams. ACM Trans. Knowl. Discov. Data 13(1), 1–23 (2018)
Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: an ensemble method for drifting concepts. J. Mach. Learn. Res. 8, 2755–2790 (2007)
Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)
Li, W., Yang, X., Liu, W., Xia, Y., Bian, J.: DDG-DA: data distribution generation for predictable concept drift adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4092–4100 (2022)
Liu, A., Lu, J., Liu, F., Zhang, G.: Accumulating regional density dissimilarity for concept drift detection in data streams. Pattern Recogn. 76, 256–272 (2018)
Liu, A., Song, Y., Zhang, G., Lu, J.: Regional concept drift detection and density synchronized drift adaptation. In: IJCAI International Joint Conference on Artificial Intelligence (2017)
Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2018)
Lu, J., Niu, L., Zhang, G.: A situation retrieval model for cognitive decision support in digital business ecosystems. IEEE Trans. Ind. Electron. 60(3), 1059–1069 (2012)
Lu, J., Yang, X., Zhang, G.: Support vector machine-based multi-source multi-attribute information integration for situation assessment. Expert Syst. Appl. 34(2), 1333–1340 (2008)
Lu, J., Zuo, H., Zhang, G.: Fuzzy multiple-source transfer learning. IEEE Trans. Fuzzy Syst. 28(12), 3418–3431 (2019)
Mihai, N., Alexandru, M., Bala-Constantin, Z.: Multimodal emotion detection from multiple data streams for improved decision making. Procedia Comput. Sci. 214, 1082–1089 (2022)
Nadeem, A., Verwer, S.: SECLEDS: sequence clustering in evolving data streams via multiple medoids and medoid voting. In: Amini, M.R., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds.) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. LNCS, vol. 13713, pp. 157–173. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26387-3_10
Otero, A., Félix, P., Márquez, D.G., García, C.A., Caffarena, G.: A fault-tolerant clustering algorithm for processing data from multiple streams. Inf. Sci. 584, 649–664 (2022)
Sangma, J.W., Pal, V., Kumar, N., Kushwaha, R., et al.: FHC-NDS: fuzzy hierarchical clustering of multiple nominal data streams. IEEE Trans. Fuzzy Syst. 31(3), 786–798 (2022)
Song, Y., Zhang, G., Lu, H., Lu, J.: A fuzzy drift correlation matrix for multiple data stream regression. In: 2020 IEEE International Conference on Fuzzy Systems, pp. 1–6. IEEE (2020)
Yu, E., Song, Y., Zhang, G., Lu, J.: Learn-to-adapt: concept drift adaptation for hybrid multiple streams. Neurocomputing 496, 121–130 (2022)
Yu, H., Liu, W., Lu, J., Wen, Y., Luo, X., Zhang, G.: Detecting group concept drift from multiple data streams. Pattern Recogn. 134, 109113 (2023)
Zhou, M., Song, Y., Zhang, G., Zhang, B., Lu, J.: An efficient Bayesian neural network for multiple data streams. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)
Acknowledgments
This work was supported by the Australian Research Council under Grants DP200100700 and FL190100149.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, K., Lu, J., Liu, A., Zhang, G. (2024). An Augmented Learning Approach for Multiple Data Streams Under Concept Drift. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14471. Springer, Singapore. https://doi.org/10.1007/978-981-99-8388-9_32
Download citation
DOI: https://doi.org/10.1007/978-981-99-8388-9_32
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8387-2
Online ISBN: 978-981-99-8388-9
eBook Packages: Computer ScienceComputer Science (R0)