Skip to main content

Towards Learning Action Models from Narrative Text Through Extraction and Ordering of Structured Events

  • Conference paper
  • First Online:
AI 2023: Advances in Artificial Intelligence (AI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14472))

Included in the following conference series:

  • 584 Accesses

Abstract

Event models, in the form of scripts, frames, or precondition/effect axioms, allow for reasoning about the causal and motivational connections between events in a story, and thus are central to AI understanding and generating narratives. However, previous efforts to learn general structured event models from text have overlooked important challenges raised by the narrative text, such as the complex (nested) event arguments and inferring the order and actuality of mentioned events. We present an NLP pipeline for extracting (partially) ordered, structured event representations for use in learning general event models from three large text corpora. We address each of the challenges that we identify to some degree, but also conclude that they raise open problems for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will use the terms event and action interchangeably. Although a distinction can be made – actions have at least one intentional participant or actor – from the point of view of the models we consider, they are largely the same.

  2. 2.

    https://www.kaggle.com/datasets/nzalake52/new-york-times-articles.

  3. 3.

    https://en.wiktionary.org/wiki/Category:English_phrasal_verbs.

References

  1. Aldawsari, M., Finlayson, M.A.: Detecting subevents using discourse and narrative features. In: Proceedings of the 57th Annual Meeting of ACL (2019)

    Google Scholar 

  2. Arora, A., Fiorino, H., Pellier, D., Métivier, M., Pesty, S.: A review of learning planning action models. Knowl. Eng. Rev. 33 (2018)

    Google Scholar 

  3. Bamman, D., O’Connor, B., Smith, N.A.: Learning latent personas of film characters. In: Proceedings of ACL, pp. 352–361 (2013)

    Google Scholar 

  4. Bekoulis, G., Deleu, J., Demeester, T., Develder, C.: Sub-event detection from Twitter streams as a sequence labeling problem. arXiv preprint arXiv:1903.05396 (2019)

  5. Bethard, S.: ClearTK-timeML: a minimalist approach to TempEval 2013. In: Proceedings of SemEval 2013, pp. 10–14 (2013)

    Google Scholar 

  6. Biten, A.F., Gomez, L., Rusinol, M., Karatzas, D.: Good news, everyone! context driven entity-aware captioning for news images. In: CVPR (2019)

    Google Scholar 

  7. Bonial, C., Hwang, J., Bonn, J., Conger, K., Babko-Malaya, O., Palmer, M.: English PropBank annotation guidelines. Center for Computational Language and Education Research Institute of Cognitive Science University of Colorado (2012)

    Google Scholar 

  8. Callanan, E., De Venezia, R., Armstrong, V., Paredes, A., Chakraborti, T., Muise, C.: MACQ: a holistic view of model acquisition techniques. arXiv preprint arXiv:2206.06530 (2022)

  9. Chambers, N., Jurafsky, D.: Unsupervised learning of narrative event chains. In: Proceeding of ACL (2008)

    Google Scholar 

  10. Chambers, N., Jurafsky, D.: Unsupervised learning of narrative schemas and their participants. In: Proceedings 47th ACL Meeting and 4th IJCNLP, pp. 602–610 (2009)

    Google Scholar 

  11. Cook, W.W.: Plotto: The Master Book of All Plots. Tin House Books (1928)

    Google Scholar 

  12. Cresswell, S., Gregory, P.: Generalised domain model acquisition from action traces. In: Twenty-First ICAPS (2011)

    Google Scholar 

  13. Feng, W., Zhuo, H.H., Kambhampati, S.: Extracting action sequences from texts based on deep reinforcement learning. In: Proceedings of IJCAI, pp. 4064–4070 (2018)

    Google Scholar 

  14. Fischbach, J., et al.: Automatic detection of causality in requirement artifacts: the CiRA approach. In: Dalpiaz, F., Spoletini, P. (eds.) REFSQ 2021. LNCS, vol. 12685, pp. 19–36. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73128-1_2

    Chapter  Google Scholar 

  15. Geffner, H., Bonet, B.: A Concise Introduction to Models and Methods for Automated Planning. Morgan & Claypool (2013). ISBN 9781608459698

    Google Scholar 

  16. Glavaš, G., Šnajder, J., Kordjamshidi, P., Moens, M.F.: HiEve: a corpus for extracting event hierarchies from news stories. In: Proceedings of 9th Language Resources and Evaluation Conference, pp. 3678–3683. ELRA (2014)

    Google Scholar 

  17. Hayton, T., Porteous, J., Ferreira, J., Lindsay, A., Read, J.: StoryFramer: from input stories to output planning models. In: ICAPS Workshop on Knowledge Engineering for Planning and Scheduling (2017)

    Google Scholar 

  18. Hayton, T., Porteous, J., Ferreira, J.F., Lindsay, A.: Narrative planning model acquisition from text summaries and descriptions. In: Proceedings of AAAI (2020)

    Google Scholar 

  19. Komai, M., Shindo, H., Matsumoto, Y.: An efficient annotation for phrasal verbs using dependency information. In: Proceedings of PACLIC, pp. 125–131 (2015)

    Google Scholar 

  20. Lamperti, G., Zanella, M.: Diagnosis of active systems (2003)

    Google Scholar 

  21. Laokulrat, N., Miwa, M., Tsuruoka, Y., Chikayama, T.: Uttime: temporal relation classification using deep syntactic features. In: SemEval, pp. 88–92 (2013)

    Google Scholar 

  22. Lee, K., He, L., Zettlemoyer, L.: Higher-order coreference resolution with coarse-to-fine inference. arXiv preprint arXiv:1804.05392 (2018)

  23. Lindsay, A., Read, J., Ferreira, J., Hayton, T., Porteous, J., Gregory, P.: Framer: planning models from natural language action descriptions. In: ICAPS (2017)

    Google Scholar 

  24. Manikonda, L., Sohrabi, S., Talamadupula, K., Srivastava, B., Kambhampati, S.: Extracting incomplete planning action models from unstructured social media data to support decision making. In: KEPS (2017)

    Google Scholar 

  25. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: ACL (2014)

    Google Scholar 

  26. McDermott, D., et al.: PDDL-the planning domain definition language–version 1.2 (1998)

    Google Scholar 

  27. Miglani, S., Yorke-Smith, N.: NLtoPDDL: one-shot learning of PDDL models from natural language process manuals. In: KEPS (2020)

    Google Scholar 

  28. Mirza, P., Sprugnoli, R., Tonelli, S., Speranza, M.: Annotating causality in the TempEval-3 corpus. In: CAtoCL, pp. 10–19 (2014)

    Google Scholar 

  29. Mirza, P., Tonelli, S.: CATENA: CAusal and TEmporal relation extraction from NAtural language texts. In: Proceedings of COLING, pp. 64–75 (2016)

    Google Scholar 

  30. Mostafazadeh, N., et al.: A corpus and cloze evaluation for deeper understanding of commonsense stories. In: Proceedings of NAACL, pp. 839–849 (2016)

    Google Scholar 

  31. Ning, Q., Subramanian, S., Roth, D.: An improved neural baseline for temporal relation extraction. In: Proceedings of EMNLP, pp. 6203–6209 (2019)

    Google Scholar 

  32. Ning, Q., Wu, H., Roth, D.: A multi-axis annotation scheme for event temporal relations. In: ACL (2018). http://cogcomp.org/papers/NingWuRo18.pdf

  33. Olmo, A., Sreedharan, S., Kambhampati, S.: GPT3-to-plan: extracting plans from text using GPT-3. arXiv preprint arXiv:2106.07131 (2021)

  34. Puente, C., Sobrino, A., Olivas, J.A., Merlo, R.: Extraction, analysis and representation of imperfect conditional and causal sentences by means of a semi-automatic process. In: International Conference on Fuzzy Systems, pp. 1–8. IEEE (2010)

    Google Scholar 

  35. Saurí, R., Littman, J., Knippen, B., Gaizauskas, R., Setzer, A., Pustejovsky, J.: TimeML Annotation Guidelines Version 1.2.1 (2006)

    Google Scholar 

  36. Sil, A., Yates, A.: Extracting STRIPS representations of actions and events. In: Recent Advances in Natural Language Processing (2011)

    Google Scholar 

  37. Tan, F.A., et al.: The causal news corpus: annotating causal relations in event sentences from news. arXiv preprint arXiv:2204.11714 (2022)

  38. Tandon, N., de Melo, G., De, A., Weikum, G.: Knowlywood: mining activity knowledge from Hollywood narratives. In: Proceedings of the CIKM (2015)

    Google Scholar 

  39. Van Harmelen, F., Lifschitz, V., Porter, B.: Handbook of Knowledge Representation. Elsevier (2008)

    Google Scholar 

  40. Webber, B., Prasad, R., Lee, A., Joshi, A.: The Penn discourse treebank 3.0 annotation manual. Philadelphia, University of Pennsylvania 35, 108 (2019)

    Google Scholar 

  41. Yang, Q., Wu, K., Jiang, Y.: Learning action models from plan examples using weighted MAX-SAT. Artif. Intell. 171(2–3), 107–143 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, R., Haslum, P., Cui, L. (2024). Towards Learning Action Models from Narrative Text Through Extraction and Ordering of Structured Events. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14472. Springer, Singapore. https://doi.org/10.1007/978-981-99-8391-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8391-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8390-2

  • Online ISBN: 978-981-99-8391-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics