Skip to main content

Generating Collective Motion Behaviour Libraries Using Developmental Evolution

  • Conference paper
  • First Online:
AI 2023: Advances in Artificial Intelligence (AI 2023)

Abstract

This paper presents an evolutionary framework for generating diverse libraries of collective motion behaviours. It builds upon recent advancements in machine recognition of collective motion and the transformation of random motions into structured collective behaviours. The paper describes the design of the framework, including the use of a fitness function and diversity metrics specifically tailored for this purpose. The proposed framework generates diverse behaviours with distinct collective motion characteristics. Analysing the relationship between genotypic and behavioural diversity, we observed that greater diversity emerges after a moderate number of evolutionary generations. Our findings highlight the effectiveness of task non-specific fitness functions in distinguishing structured collective behaviours in an evolutionary setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abpeikar, S., Kasmarik, K., Garratt, M., Hunjet, R., Khan, M.M., Qiu, H.: Automatic collective motion tuning using actor-critic deep reinforcement learning. Swarm Evol. Comput. 101085 (2022)

    Google Scholar 

  2. Barlow, M., Lakshika, E.: What cost teamwork: quantifying situational awareness and computational requirements in a proto-team via multi-objective evolution. In: 2016 IEEE Congress on Evolutionary Computation (CEC) (2016)

    Google Scholar 

  3. Eshelman, L., Schaffer, J.: Real-coded genetic algorithms and interval-schemata. In: Foundations of Genetic Algorithms, vol. 2, p. 187–202. Elsevier (1993)

    Google Scholar 

  4. Ferrante, E., Turgut, A., Stranieri, A., Pinciroli, C., Birattari, M., Dorigo, M.: A self-adaptive communication strategy for flocking in stationary and non-stationary environments. Natural Comput. 13(2), 225–245 (2014)

    Article  MathSciNet  Google Scholar 

  5. Gomes, J., Urbano, P., Christensen, A.: Evolution of swarm robotics systems with novelty search. Swarm Intell. 7(2–3), 115–144 (2013)

    Article  Google Scholar 

  6. Hamann, H.: Evolution of collective behaviours by minimizing surprise. In: ALIFE2014 (2014)

    Google Scholar 

  7. Harik, G.: Finding multimodal solutions using restricted tournament selection. In: ICGA (1995)

    Google Scholar 

  8. Harvey, J., Merrick, K.E., Abbass, H.A.: Assessing human judgment of computationally generated swarming behavior. Front. Robot. AI 5, 13 (2018)

    Article  Google Scholar 

  9. Harvey, J., Merrick, K., Abbass, H.: Quantifying swarming behaviour. In: Tan, Y., Shi, Y., Niu, B. (eds.) ICSI 2016. LNCS, vol. 9712, pp. 119–130. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41000-5_12

    Chapter  Google Scholar 

  10. Khan, M., Kasmarik, K., Barlow, M.: Autonomous detection of collective behaviours in swarms. Swarm Evol. Comput. 57, 100715 (2020)

    Article  Google Scholar 

  11. Merrick, K., Maher, M.: Motivated Reinforcement Learning: Curious Characters for Multiuser Games. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-89187-1

    Book  Google Scholar 

  12. Reynolds, C.: Flocks, herds and schools: a distributed behavioral model. In: Computer Graphics (SIGGRAPH 1987) Conference Proceedings, vol. 21, no. 4, pp. 25–34 (1987)

    Google Scholar 

  13. Shafi, K., Merrick, K.E., Debie, E.: Evolution of intrinsic motives in multi-agent simulations. In: Bui, L.T., Ong, Y.S., Hoai, N.X., Ishibuchi, H., Suganthan, P.N. (eds.) SEAL 2012. LNCS, vol. 7673, pp. 198–207. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34859-4_20

    Chapter  Google Scholar 

  14. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-organizing map in matlab: the SOM toolbox. In: Proceedings of the Matlab DSP Conference (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam Debie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, M. et al. (2024). Generating Collective Motion Behaviour Libraries Using Developmental Evolution. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14472. Springer, Singapore. https://doi.org/10.1007/978-981-99-8391-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8391-9_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8390-2

  • Online ISBN: 978-981-99-8391-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics