Abstract
Containers are quickly gaining popularity in cloud computing environments due to their scalable and lightweight characteristics. However, the problem of Resource Allocation in Container-based clouds (RAC) is much more challenging than the Virtual Machines (VMs)-based clouds because RAC includes two levels of allocation problems: allocating containers to VMs and allocating VMs to Physical Machine (PMs). In this paper, we proposed a novel Group Genetic Algorithm (GGA) with energy-aware crossover, Best-Fit-Decreasing Insert (BFDI), and Local Search based Unpack (LSU) operator to solve RAC problems. Meanwhile, we apply an energy model with heterogeneous PMs that accurately captures the energy consumption of cloud data centers. Compared to state-of-the-art methods, experiments show that our method can significantly reduce the energy consumption on a wide range of test datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abohamama, A.S., Hamouda, E.: A hybrid energy-aware virtual machine placement algorithm for cloud environments. Expert Syst. Appl. 150, 113306 (2020)
Akindele, T., Tan, B., Mei, Y., Ma, H.: Hybrid grouping genetic algorithm for large-scale two-level resource allocation of containers in the cloud. In: Long, G., Yu, X., Wang, S. (eds.) AI 2022. LNCS (LNAI), vol. 13151, pp. 519–530. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97546-3_42
Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutorials 18(1), 732–794 (2015)
Dósa, G., Sgall, J.: First fit bin packing: a tight analysis. In: International Symposium on Theoretical Aspects of Computer Science (STACS) (2013)
Gawali, M.B., Shinde, S.K.: Task scheduling and resource allocation in cloud computing using a heuristic approach. J. Cloud Comput. 7(1), 1–16 (2018). https://doi.org/10.1186/s13677-018-0105-8
Kaaouache, M.A., Bouamama, S.: Solving bin packing problem with a hybrid genetic algorithm for VM placement in cloud. Procedia Comput. Sci. 60, 1061–1069 (2015)
Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R.: A framework and algorithm for energy efficient container consolidation in cloud data centers. In: IEEE International Conference on Data Science and Data Intensive Systems, pp. 368–375. IEEE (2015)
Ramos-Figueroa, O., Quiroz-Castellanos, M., Mezura-Montes, E., Kharel, R.: Variation operators for grouping genetic algorithms: a review. Swarm Evol. Comput. 60, 100796 (2021)
Saidi, K., Bardou, D.: Task scheduling and VM placement to resource allocation in cloud computing: challenges and opportunities. Cluster Comput. 1–19 (2023)
Sengupta, J., Singh, P., Suri, P.K.: Energy aware next fit allocation approach for placement of VMs in cloud computing environment. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FICC 2020. AISC, vol. 1130, pp. 436–453. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39442-4_33
Tan, B., Ma, H., Mei, Y.: Novel genetic algorithm with dual chromosome representation for resource allocation in container-based clouds. In: IEEE International Conference on Cloud Computing (CLOUD), pp. 452–456. IEEE (2019)
Tan, B., Ma, H., Mei, Y.: A group genetic algorithm for resource allocation in container-based clouds. In: Paquete, L., Zarges, C. (eds.) EvoCOP 2020. LNCS, vol. 12102, pp. 180–196. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43680-3_12
Tan, B., Ma, H., Mei, Y.: A NSGA-II-based approach for multi-objective micro-service allocation in container-based clouds. In: 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), pp. 282–289. IEEE (2020)
Wang, C., Ma, H., Chen, G., Huang, V., Yu, Y., Christopher, K.: Energy-aware dynamic resource allocation in container-based clouds via cooperative coevolution genetic programming. In: Correia, J., Smith, S., Qaddoura, R. (eds.) EvoApplications 2023. LNCS, vol. 13989, pp. 539–555. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30229-9_35
Zhang, R., Zhong, A., Dong, B., Tian, F., Li, R.: Container-VM-PM architecture: a novel architecture for docker container placement. In: Luo, M., Zhang, L.-J. (eds.) CLOUD 2018. LNCS, vol. 10967, pp. 128–140. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94295-7_9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Fang, Z., Ma, H., Chen, G., Hartmann, S. (2024). A Group Genetic Algorithm for Energy-Efficient Resource Allocation in Container-Based Clouds with Heterogeneous Physical Machines. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14472. Springer, Singapore. https://doi.org/10.1007/978-981-99-8391-9_36
Download citation
DOI: https://doi.org/10.1007/978-981-99-8391-9_36
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8390-2
Online ISBN: 978-981-99-8391-9
eBook Packages: Computer ScienceComputer Science (R0)