Skip to main content

A Group Genetic Algorithm for Energy-Efficient Resource Allocation in Container-Based Clouds with Heterogeneous Physical Machines

  • Conference paper
  • First Online:
AI 2023: Advances in Artificial Intelligence (AI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14472))

Included in the following conference series:

  • 1169 Accesses

Abstract

Containers are quickly gaining popularity in cloud computing environments due to their scalable and lightweight characteristics. However, the problem of Resource Allocation in Container-based clouds (RAC) is much more challenging than the Virtual Machines (VMs)-based clouds because RAC includes two levels of allocation problems: allocating containers to VMs and allocating VMs to Physical Machine (PMs). In this paper, we proposed a novel Group Genetic Algorithm (GGA) with energy-aware crossover, Best-Fit-Decreasing Insert (BFDI), and Local Search based Unpack (LSU) operator to solve RAC problems. Meanwhile, we apply an energy model with heterogeneous PMs that accurately captures the energy consumption of cloud data centers. Compared to state-of-the-art methods, experiments show that our method can significantly reduce the energy consumption on a wide range of test datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://aws.amazon.com/ec2/pricing/on-demand/.

References

  1. Abohamama, A.S., Hamouda, E.: A hybrid energy-aware virtual machine placement algorithm for cloud environments. Expert Syst. Appl. 150, 113306 (2020)

    Article  Google Scholar 

  2. Akindele, T., Tan, B., Mei, Y., Ma, H.: Hybrid grouping genetic algorithm for large-scale two-level resource allocation of containers in the cloud. In: Long, G., Yu, X., Wang, S. (eds.) AI 2022. LNCS (LNAI), vol. 13151, pp. 519–530. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97546-3_42

    Chapter  Google Scholar 

  3. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutorials 18(1), 732–794 (2015)

    Article  Google Scholar 

  4. Dósa, G., Sgall, J.: First fit bin packing: a tight analysis. In: International Symposium on Theoretical Aspects of Computer Science (STACS) (2013)

    Google Scholar 

  5. Gawali, M.B., Shinde, S.K.: Task scheduling and resource allocation in cloud computing using a heuristic approach. J. Cloud Comput. 7(1), 1–16 (2018). https://doi.org/10.1186/s13677-018-0105-8

    Article  Google Scholar 

  6. Kaaouache, M.A., Bouamama, S.: Solving bin packing problem with a hybrid genetic algorithm for VM placement in cloud. Procedia Comput. Sci. 60, 1061–1069 (2015)

    Article  Google Scholar 

  7. Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R.: A framework and algorithm for energy efficient container consolidation in cloud data centers. In: IEEE International Conference on Data Science and Data Intensive Systems, pp. 368–375. IEEE (2015)

    Google Scholar 

  8. Ramos-Figueroa, O., Quiroz-Castellanos, M., Mezura-Montes, E., Kharel, R.: Variation operators for grouping genetic algorithms: a review. Swarm Evol. Comput. 60, 100796 (2021)

    Article  Google Scholar 

  9. Saidi, K., Bardou, D.: Task scheduling and VM placement to resource allocation in cloud computing: challenges and opportunities. Cluster Comput. 1–19 (2023)

    Google Scholar 

  10. Sengupta, J., Singh, P., Suri, P.K.: Energy aware next fit allocation approach for placement of VMs in cloud computing environment. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FICC 2020. AISC, vol. 1130, pp. 436–453. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39442-4_33

    Chapter  Google Scholar 

  11. Tan, B., Ma, H., Mei, Y.: Novel genetic algorithm with dual chromosome representation for resource allocation in container-based clouds. In: IEEE International Conference on Cloud Computing (CLOUD), pp. 452–456. IEEE (2019)

    Google Scholar 

  12. Tan, B., Ma, H., Mei, Y.: A group genetic algorithm for resource allocation in container-based clouds. In: Paquete, L., Zarges, C. (eds.) EvoCOP 2020. LNCS, vol. 12102, pp. 180–196. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43680-3_12

    Chapter  Google Scholar 

  13. Tan, B., Ma, H., Mei, Y.: A NSGA-II-based approach for multi-objective micro-service allocation in container-based clouds. In: 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), pp. 282–289. IEEE (2020)

    Google Scholar 

  14. Wang, C., Ma, H., Chen, G., Huang, V., Yu, Y., Christopher, K.: Energy-aware dynamic resource allocation in container-based clouds via cooperative coevolution genetic programming. In: Correia, J., Smith, S., Qaddoura, R. (eds.) EvoApplications 2023. LNCS, vol. 13989, pp. 539–555. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30229-9_35

    Chapter  Google Scholar 

  15. Zhang, R., Zhong, A., Dong, B., Tian, F., Li, R.: Container-VM-PM architecture: a novel architecture for docker container placement. In: Luo, M., Zhang, L.-J. (eds.) CLOUD 2018. LNCS, vol. 10967, pp. 128–140. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94295-7_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengxin Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, Z., Ma, H., Chen, G., Hartmann, S. (2024). A Group Genetic Algorithm for Energy-Efficient Resource Allocation in Container-Based Clouds with Heterogeneous Physical Machines. In: Liu, T., Webb, G., Yue, L., Wang, D. (eds) AI 2023: Advances in Artificial Intelligence. AI 2023. Lecture Notes in Computer Science(), vol 14472. Springer, Singapore. https://doi.org/10.1007/978-981-99-8391-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8391-9_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8390-2

  • Online ISBN: 978-981-99-8391-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics