Abstract
In recent years, Large Language Models (LLMs) have rapidly progressed in their capabilities in natural language processing (NLP) tasks, which have interestingly grown in scope to include generating computer programs. Indeed, recent studies have demonstrated how LLMs can enable highly proficient genetic programming (GP) algorithms and novel evolutionary algorithms more broadly. Motivated by these opportunities, this paper introduces OpenELM, an open-source Python library for designing evolutionary algorithms that leverage LLMs to intelligently generate variation, as well as to assess fitness and measures of diversity. The library includes implementations of several variation operators, and is designed to accommodate those with limited compute resources, by enabling fast inference, being runnable through hosted notebooks (such as Google Colab), and allowing for API-based LLMs to be used instead of local models run on GPUs. Additionally, OpenELM includes a variety of domain implementations for easy experimentation and adaptation, including several GP domains. The hope is to help researchers easily develop new approaches and applications within the nascent and largely unexplored paradigm of evolutionary algorithms that leverage LLMs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
OpenELM is available at https://github.com/CarperAI/OpenELM.
- 2.
Our diff models are released open-source alongside OpenELM, under an MIT license on the HuggingFace Hub repository.
350M: https://huggingface.co/CarperAI/diff-codegen-350m-v2.
References
OpenAI. Gpt-4 technical report (2023)
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Adv. Neural Inf. Process. Syst. 33, 1877 (2020)
Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H.W., Sutton, C., Gehrmann, S., et al.: arXiv:2204.02311 (2022)
Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: arXiv:2112.00861 (2021)
Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y.T., Li, Y., Lundberg, S., et al.: arXiv:2303.12712 (2023)
Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.D.O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., et al.: arXiv:2107.03374 (2021)
Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., Savarese, S., Xiong, C.: arXiv preprint (2022)
Nijkamp, E., Hayashi, H., Xiong, C., Savarese, S., Zhou, Y.: arXiv:2305.02309 (2023)
Jiang, N., Liu, K., Lutellier, T., Tan, L.: arXiv:2302.05020 (2023)
Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S., Yang, Y., et al.: arXiv:2303.17651 (2023)
Shinn, N., Labash, B., Gopinath, A.: arXiv:2303.11366 (2023)
Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKinnon, C., et al.: arXiv:2212.08073 (2022)
Sun, Z., Shen, Y., Zhou, Q., Zhang, H., Chen, Z., Cox, D., Yang, Y., Gan, C.: arXiv:2305.03047 (2023)
Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C., Stanley, K.O.: arXiv:2206.08896 (2022)
Szerlip, P., Stanley, K.: In: ECAL 2013: The Twelfth European Conference on Artificial Life, pp. 218–225. MIT Press (2013)
Meyerson, E., Nelson, M.J., Bradley, H., Moradi, A., Hoover, A.K., Lehman, J.: arXiv:2302.12170 (2023)
Chen, A., Dohan, D.M., So, D.R.: arXiv:2302.14838 (2023)
Sudhakaran, S., González-Duque, M., Glanois, C., Freiberger, M., Najarro, E., Risi, S.: MarioGpt: Open-ended text2level generation through large language models (2023)
Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao, C., Jiang, D.: arXiv:2304.12244 (2023)
Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N., et al.: arXiv:2101.00027 (2020)
Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Metzler, D., et al.: arXiv:2206.07682 (2022)
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., et al.: Adv. Neural Inf. Process. Syst. 35, 27730 (2022)
Bradley, H., Dai, A., Zhang, J., Clune, J., Stanley, K., Lehman, J.: CarperAI Blog. https://carper.ai/quality-diversity-through-ai-feedback/ (2023)
Lehman, J., Stanley, K.O.: In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218 (2011)
Pugh, J.K., Soros, L.B., Stanley, K.O.: Frontiers in robotics and AI, p. 40 (2016)
Mouret, J.B., Clune, J.: arXiv:1504.04909 (2015)
Flageat, M., Cully, A.: arXiv:2006.14253 (2020)
Vassiliades, V., Chatzilygeroudis, K., Mouret, J.B.: IEEE Trans. Evol. Comput. 9 (2017). https://doi.org/10.1109/TEVC.2017.2735550. https://inria.hal.science/hal-01630627
Ray, A., McCandlish, S.: Independent contribution (2020)
Bradley, H., Fan, H., Saini, H., Adithyan, R., Purohit, S., Lehman, J.: CarperAI Blog. https://carper.ai/diff-model/ (2023)
Foundation, F.S.: Unified diff format. https://www.gnu.org/software/diffutils/manual/html_node/Unified-Format.html (2023). Accessed 02 Aug 2023
Li, Z., Lu, S., Guo, D., Duan, N., Jannu, S., Jenks, G., Majumder, D., Green, J., Svyatkovskiy, A., Fu, S., et al.: arXiv:2203.09095 (2022)
He, J., Beurer-Kellner, L., Vechev, M.: In: International Conference on Machine Learning (PMLR, 2022), pp. 8559–8580
Reimers, N., Gurevych, I.: In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1410. https://aclanthology.org/D19-1410
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., Rush, A.: In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–45. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-demos.6. https://aclanthology.org/2020.emnlp-demos.6
Chase, H.: Langchain. https://github.com/hwchase17/langchain (2023). Accessed 02 Aug 2023
Corporation, N.: Triton Inference Server: an Optimized Cloud and Edge Inferencing Solution. https://github.com/triton-inference-server/server (2021). Accessed 02 Aug 2023
Young, E.G., Zhu, P., Caraza-Harter, T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: In: Proceedings of the 11th USENIX Conference on Hot Topics in Cloud Computing, p. 16. USENIX Association, USA (2019). HotCloud’19
Schuster, T., Kalyan, A., Polozov, A., Kalai, A.T.: In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track. https://arxiv.org/abs/2106.05784 (2021)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models (2021)
Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Adv. Neural Inf. Process. Syst. 35, 36479 (2022)
Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Nat. 585(7825), 357 (2020). https://doi.org/10.1038/s41586-020-2649-2.
Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al.: In: International Conference on Machine Learning (PMLR, 2021), pp. 8748–8763
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q., Zhou, D.: arXiv:2201.11903 (2022)
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., Schmidt, D.C.: arXiv:2302.11382 (2023)
Lester, B., Al-Rfou, R., Constant, N.: arXiv:2104.08691 (2021)
Li, X.L., Liang, P.: arXiv:2101.00190 (2021)
Zhou, Y., Muresanu, A.I., Han, Z., Paster, K., Pitis, S., Chan, H., Ba, J.: arXiv:2211.01910 (2022)
Honovich, O., Shaham, U., Bowman, S.R., Levy, O.: arXiv:2205.10782 (2022)
Biderman, S., Schoelkopf, H., Anthony, Q., Bradley, H., O’Brien, K., Hallahan, E., Khan, M.A., Purohit, S., Prashanth, U.S., Raff, E., et al.: arXiv:2304.01373 (2023)
Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al.: arXiv:2302.13971 (2023)
Vassiliades, V., Chatzilygeroudis, K., Mouret, J.B.: IEEE Trans. Evol. Comput. 22, 623 (2016)
Wang, R., Lehman, J., Rawal, A., Zhi, J., Li, Y., Clune, J., Stanley, K.: In: Proceedings of the 37th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 119, ed. by H.D. III, A. Singh (PMLR, 2020), Proceedings of Machine Learning Research, vol. 119, pp. 9940–9951. https://proceedings.mlr.press/v119/wang20l.html
Haluptzok, P., Bowers, M., Kalai, A.T.: In: The Eleventh International Conference on Learning Representations. https://openreview.net/forum?id=SaRj2ka1XZ3 (2023)
Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.: arXiv:2106.09685 (2021)
Li, R., Allal, L.B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., et al.: arXiv:2305.06161 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Bradley, H., Fan, H., Galanos, T., Zhou, R., Scott, D., Lehman, J. (2024). The OpenELM Library: Leveraging Progress in Language Models for Novel Evolutionary Algorithms. In: Winkler, S., Trujillo, L., Ofria, C., Hu, T. (eds) Genetic Programming Theory and Practice XX. Genetic and Evolutionary Computation. Springer, Singapore. https://doi.org/10.1007/978-981-99-8413-8_10
Download citation
DOI: https://doi.org/10.1007/978-981-99-8413-8_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8412-1
Online ISBN: 978-981-99-8413-8
eBook Packages: Computer ScienceComputer Science (R0)